Infrared spectroscopy for non-invasive blood glucose monitoring(Invited)
-
摘要: 介绍了无创血糖监测的几种光学方法以及红外光谱法用于无创血糖监测的优势。分析了无创血糖监测红外光谱法的主要问题,包括光在人体组织中的复杂传播;葡萄糖吸收信号微弱,且与人体中其它生化成分吸收光谱重叠;人体组织背景吸收干扰严重等。总结了无创血糖监测红外光谱法的最新进展,给出抑制人体组织背景吸收干扰的方法,并认为组织液可代替血液用于血糖水平的测量。展望了该领域未来研究趋势,主要涉及精确描述光子在组织中的传输、测量皮肤表皮内或表皮与真皮浅层光谱信息,以及提高光谱仪器信噪比,建立葡萄糖吸收带定标模型。Abstract: Some optical methods for non-invasive blood glucose monitoring are introduced, and the advantages of infrared spectroscopy applied to the non-invasive blood glucose monitoring are presented. The main problems of infrared spectroscopy in the non-invasive blood glucose monitoring are analyzed, including complicated transmission of light in tissue, weak absorption signal of glucose, overlapped absorption spectra of different biochemistry components, serious interference of background absorption and so on. Recent advances of infrared spectroscopy in non-invasive blood glucose monitoring are summarized and the methods to restrain the interference of background absorption are pointed out. It suggests that the tissue fluid can replace the blood applied to the measurement of blood glucose. Finally, the paper gives further research trends of this field, which includes describing the transmission of light in tissue accurately, measuring the spectra of epidermis or the superficial layer between epidermis and dermis, improving instrument SNR, and building the calibration model for the absorption band of blood glucose.
-
[1] BERGHE G V D,WOUTERS P,WEEKERS F,et al.. Intensive insulin therapy in critically ill patients[J]. N. Engl. J Med.,2001,345(19):1359-1367. [2] KRINSLEY J S. Effect of an intensive glucose management protocol on the mortality of critically ill adult patients[J]. Mayo. Clin. Proc.,2004,79(8):992-1000. [3] JONES M,HARRISON J M. The future of diabetes technologies and therapeutics[J]. Diabetes Technol. Ther.,2002,4(3):351-359. [4] RABINOVITCH B,MARCH W F,ADAMS R L. Noninvasive glucose monitoring of the aqueous humor of the eye:part I.measurement of very small optical rotations[J]. Diabetes Care,1982,5(3):254-258. [5] WAN Q,DIXON J B,COTÉ G L. Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence[J]. J. Biomedical Optics,2005,10(2):024029-1-024029-8. [6] WU C M,TSAI Y C. Angular displacement-enhanced heterodyne polarimeter for the measurement of optically active media[J]. Sensors and Actuators B,2006,120:324-328. [7] LARIN K V,MOTAMEDI M,ASHITKOV T V,et al.. Specificity of noninvasive blood glucose sensing using optical coherence tomography technique:a pilot study[J]. Phys. Med. Biol.,2003,48:1371-1390. [8] ESENALIEV R O,LARIN K V,LARINA I V,et al.. Noninvasive monitoring of glucose concentration with optical coherence tomography[J]. Opt. Lett.,2001,26(13):992-994. [9] SAPOZHNIKOVA V V,PROUGH D,KURANOV R V,et al.. Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography[J]. Exp. Biol. Med.,2006,231:1323-1332. [10] YONZON C R,HAYNES C L,ZHANG X,et al.. A glucose biosensor based on surface-enhanced Raman scattering:improved partition layer, temporal stability, reversibility, and resistance to serum protein interference[J]. Anal. Chem.,2004,76(1):78-85. [11] CASPERS P J,LUCASSEN G W,PUPPELS G J. Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin[J]. Biophys. J.,2003,85(1):572-580. [12] NORRIS K. Possible Medical Applications of NIR . Aberdeen,1992,Making light work:advances in near infrared spectroscopy UK,1992:596-602. [13] HEISE H M,MARBACH R. Effect of data pretreatment on the noninvasive blood glucose measurement by diffuse reflectance NIR spectroscopy[J]. SPIE,1994,2089:114-115. [14] CHEN J,ARNOLD M A,SMALL G W. Comparison of combination and first overtone spectral regions for near-infrared calibration models for glucose and other biomolecules in aqueous solutions[J]. Anal. Chem.,2004,76(18):5405-5413. [15] DANZER K,FISCHBACHER C H,JAGEMANN K U,et al.. Near-infrared diffuse reflection spectroscopy for non-invasive blood-glucose monitoring[J]. LEOS Newslett,1998,12:9-11. [16] 陈文亮,等. 1100~1700 nm近红外光谱无创血糖测量的OGTT实验研究[J]. 生物医学工程学杂志 ,2004,21(5):824-827. CHEN W L,et al.. Experimental research on OGTT for noninvarisve blood glucose detection through near-infrared spectroscopy ranging from 1100 nm to 1700 nm[J]. J. Biomed. Eng.,2004,21(5):824-827.(in Chinese) [17] MALIN S F,RUCHTI T L,BLANK T B,et al.. Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy[J]. Clinical Chemistry,1999,45(9):1651-1658. [18] SMANN A. Non-invasive blood glucose monitoring by means of near infrared spectroscopy:investigation of long-term accuracy and stability[J]. Exp. Clin. Endocrinol. Diabetes,2000,108(6):406-413. [19] 丁海泉,卢启鹏,彭忠琦,等 .近红外光谱技术用于无创生化检验研究的进展[J]. 光谱学与光谱分析 ,2010,30(8):2107-2110. DING H Q,LU Q P,PENG Z Q,et al.. Progress in noninvasive biochemical examination by near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2010,30(8):2107-2110.(in Chinese) [20] KAISER N. Laser absorption spectroscopy with an ATR prism[J]. IEEE Trans. Biomed Eng.,1979,26(10):597-600. [21] MENDELSON Y,CLERMONT A C,PEURA R A,et al.. Blood glucose measurement by multiple attenuated total reflection and infrared absorption spectroscopy[J]. Biomedical Engineering,1990,37(5):458-465. [22] HEISE H M,MARBACH R,JANATSCH G,et al.. Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy[J]. Anal. Chem.,1989,61(18):2009-2015. [23] VONACH R,BUSCHMANN J,FALKOWSKI R,et al.. Application of mid-infrared transmission spectrometry to the direct determination of glucose in whole blood[J]. Appl. Spectroscopy,1998,52(6):820-822. [24] WARD K J,HAALAND D M,ROBINSON M R,et al.. Post-prandial blood glucose determination by quantitative mid-infrared spectroscopy[J]. Appl. Spectroscopy,1992,46(6):959-965. [25] KIM Y J,HAHN S,YOON G.. Determination of glucose in whole blood samples by mid-infrared spectroscopy[J]. Appl. Opt.,42(4):745-749. [26] SHEN Y C,DAVIES A G,LINFLELD E H,et al.. The use of fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood[J]. Physics in Medicine and Biology,2003,48(13):2023-2032. [27] BUDíNOVÁ G,SALVA J,VOLKA K. Application of molecular spectroscopy in the mid-infrared region to the determination of glucose and cholesterol in whole blood and in blood serum[J]. Appl. Spectroscopy,1997,51(5):631-635. [28] SHAW R A,KOTOWICH S,LEROUXAND M,et al.. Multianalyte serum analysis using mid-infrared spectroscopy[J]. Ann. Clin. Biochem.,1998,35:624-632. [29] KAJIWARA K,UEMURA T,KISHIKAWA H,et al.. Noninvasive measurement of blood glucose concentrations by analyzing fourier transform infra-red absorbance spectra through oral mucosa[J]. Med. & Biol. Eng. Comput,1993,31:S17-S22. [30] LILIENFELD-TOAL H V,WEIDENM LLE M,XHELAJ A,et al.. A novel approach to non-invasive glucose measurement by mid-infrared spectroscopy:the combination of quantum cascade lasers(QCL) and photoacoustic detection[J]. Vibrational Spectroscopy,2005,38:209-215. [31] ISHIZAWA H,MURO A,TAKANO T,et al.. Non-invasive blood glucose measurement based on ATR infrared spectroscopy / /SICE Annual Conference,2008,Tokyo,Japan,20-22 Aug,2008:321-324. [32] 陈星旦. 近红外光谱无创生化检验的可能性[J]. 光学 精密工程 ,2008,16(5):759-763. CHEN X D. Possibility of noninvasive clinical biochemical examination by near infrared spectroscopy[J]. Opt. Precision Eng.,2008,16(5):759-763.(in Chinese) [33] 丁海泉,卢启鹏,王动民,等. 近红外光谱无创血糖检测中有效信号提取方法的研究[J]. 光谱学与光谱分析 ,2010,30(1):50-53. DING H Q,LU Q P,WANG D M,et al.. Research on the effective signal extraction in the noninvasive blood glucose sensing by near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2010,30(1):50-53.(in Chinese) [34] 丁海泉. 无创血糖检测中的近红外血流容积光谱基本问题研究 .长春:中国科学院长春光学精密机械与物理研究所,2010. DING H Q. Basic research of the near-infrared blood volume spectroscopy in non-invasive glucose testing . Changchun:Changchun Insititute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,2010.(in Chinese) [35] YAMAKOSHI K,YAMAKOSHI Y. Pulse glucometry:a new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry[J]. J. Biomedical Optics,2006,11(5):054028-1-054028-9. [36] 李刚,王焱,李秋霞,等. 动态光谱法对提高近红外无创血液成份检测精度的理论分析[J]. 红外与毫米波学报 ,2006,25(5):345-348. LI G,WANG Y,LI Q X,et al.. Theoretic study on improving noninvasive measurement accuracy of blood component by dynamic spectrum method[J]. J. Infrared Millim. Waves,2006,25(5):345-348.(in Chinese) [37] 陈韵. 近红外无创血糖测量—基准波长浮动基准法的研究 .天津:天津大学,2010. CHEN Y. Study on reference wavelength method for non-invasive blood glucose sensing with near infrared spectroscopy . Tianjin:Tianjin University,2010.(in Chinese) [38] OLESBERG J T,LIU L Z,ZEE V V,et al.. In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels[J]. SPIE,2004,5325:11-20. [39] LÓNNROTH P,JANSSON P A,SMITH U. A microdialysis method allowing characterization of intercellular waterspace in humans[J]. Am J Physiol Endocrinol Metab,1987,253:E228-E231. [40] JANSSON P A,FOWELIN J,SMITH U,et al.. Characterization by microdialysis of intercellular glucose level in subcutaneous tissue in humans[J]. Am J Physiol Endocrinol Metab,1988,255:E218-E220. [41] BANTLE J P,THOMAS W. Glucose measurement in patients with diabetes mellitus with dermal interstitial fluid[J]. J. Lab. Clin. Methods,1997,130(4):436-441. [42] THENNADIL S N,RENNERT J L,WENZEL B J,et al. Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels[J]. Diabetes Technology & Therapeutics,2001,3(3):357-365. [43] GROENENDAAL W,et al.. Quantifying the composition of human skin for glucose sensor development[J]. J. Diabetes Science and Technology,2010,4(5):1032-1040. [44] 陈星旦,王动民,卢启鹏,等. 中红外无创血糖研究进展并论角质层影响[J]. 光学学报 ,2011,31(9):0900105-1-0900105-6. CHEN X D,WANG D M,LU Q P,et al.. Progress of MIR non-invasive blood glucose determination and effect of stratum corneum[J]. Acta Optica Sinica,2011,31(9):0900105-1-0900105-6.(in Chinese)
计量
- 文章访问数: 2917
- HTML全文浏览量: 456
- PDF下载量: 1174
- 被引次数: 0