留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Common failure modes and mechanisms in oxide vertical cavity surface emitting lasers

ZHANG Yu-qi ZUO Zhi-yuan KAN Qiang ZHAO Jia

张玉岐, 左致远, 阚强, 赵佳. 氧化型垂直腔面发射激光器的常见失效模式和机理分析[J]. 中国光学(中英文), 2022, 15(2): 187-209. doi: 10.37188/CO.EN.2021-0012
引用本文: 张玉岐, 左致远, 阚强, 赵佳. 氧化型垂直腔面发射激光器的常见失效模式和机理分析[J]. 中国光学(中英文), 2022, 15(2): 187-209. doi: 10.37188/CO.EN.2021-0012
ZHANG Yu-qi, ZUO Zhi-yuan, KAN Qiang, ZHAO Jia. Common failure modes and mechanisms in oxide vertical cavity surface emitting lasers[J]. Chinese Optics, 2022, 15(2): 187-209. doi: 10.37188/CO.EN.2021-0012
Citation: ZHANG Yu-qi, ZUO Zhi-yuan, KAN Qiang, ZHAO Jia. Common failure modes and mechanisms in oxide vertical cavity surface emitting lasers[J]. Chinese Optics, 2022, 15(2): 187-209. doi: 10.37188/CO.EN.2021-0012

氧化型垂直腔面发射激光器的常见失效模式和机理分析

详细信息
  • 中图分类号: TN365

Common failure modes and mechanisms in oxide vertical cavity surface emitting lasers

doi: 10.37188/CO.EN.2021-0012
Funds: Supported by the Nano Special Project of National Key Research and Development Program(No. 2018YFA0209001); National Key Research and Development Project(No. 2018YFA0209002, No. 2018YFB2200700)
More Information
    Author Bio:

    ZHANG Yu-qi (1991—), male, was born in Liaoyang, Liaoning province. He received his Master degree from Harbin Institute of Technology in 2015. Currently, he is a Ph.D student in Key Laboratory of Laser&Infrared System on Shandong University and a senior engineer in Xiamen San’An Integrated Circuit Co., LTD. His research interests are on reliability and failure analysis of semiconductor lasers. E-mail: zyxzyq@163.com

    ZUO Zhi-yuan (1984—), male, was born in Dezhou, Shandong province. He received his Ph.D degree from Shandong University in 2012. Currently, he is an associate professor in Key Laboratory of Laser & Infrared System on Shandong University. His research interests are the design and fabrication of heterogeneous integrated optoelectronic devices. E-mail: zuozhiyuan@sdu.edu.cn

    KAN Qiang (1977—), male, Researcher, Doctoral supervisor. He received his Ph.D degree from University of Chinese Academy of Sciences in 2005. His research interests are on photonic crystal microcavity laser and photonic crystal vertical cavity surface emitting laser. E-mail: kanqiang@semi.ac.cn

    ZHAO Jia (1984—), male, was born in Jinan, Shandong province. He received his Ph.D degree from Shandong University in 2011. Currently, he is a professor in School of Information Science and Engineering on Shandong University. His research interests are on optoelectronic devices and system design, computational electromagnetics, etc. E-mail: zhaojia@sdu.edu.cn

    Corresponding author: zhaojia@sdu.edu.cn
  • 摘要: 氧化型垂直腔面发射激光器(VCSEL)在高速光通信中有着广泛的应用,应用过程中的可靠性是一个非常重要的指标,要求有高寿命和低失效率。为了更好地了解VCSEL在应用过程中的失效模式和机理,提升器件的可靠性,本文从器件设计、加工制造和应用过程等3个环节总结分析了氧化型VCSEL的常见失效模式、产生原因和机理,并提出了适当的改善措施和建议。其中,对氧化应力、静电放电和湿气腐蚀这3个主要失效因素进行了更为详细的分析。基于以上对业界研究工作的总结和分析,最后对实际工作中遇到的VCSEL失效案例进行简单的介绍,为VCSEL学者、研发设计、制造和使用人员提供一个较为全面的失效分析案例库。

     

  • 图 1  氧化型VCSEL的结构示意图[16]

    Figure 1.  Schematic diagram of the oxide VCSEL structure[16]

    图 2  铟含量对激光可靠性的影响[19]

    Figure 2.  The effect of indium content on laser reliability[19]

    图 3  失效的VCSEL内位错的示意图[25]

    Figure 3.  Trace diagram of DLD in a failed VCSEL viewed from the top and side[25]

    图 4  不同氧化层成分的横截面TEM(XS-TEM)图片[24]。 (a) Al0.98Ga0.02As 氧化层;(b) AlAs氧化层

    Figure 4.  Cross-sectional TEM images of different oxide compositions[24]. (a) Al0.98Ga0.02As oxide layer; (b) AlAs oxide layer

    图 5  氧化物VCSEL台面边缘的XS-TEM照片[29]

    Figure 5.  Cross-sectional TEM images of an oxide VCSEL mesa[29]

    图 6  位错网络轨迹的TEM图像[30]

    Figure 6.  TEM images showing a tracing of the dislocation network[30]

    图 7  原始图(a)和无氧化物图(b)的截面图(扫描电镜)[30]

    Figure 7.  Cross-sectional SEM images. (a)Original design. (b) Oxide free design[30]

    图 8  工艺过程引起失效VCSEL的平面TEM(PV-TEM)图像 [32]

    Figure 8.  Plan view TEM of failed VCSEL introduced during manufacturing[32]

    图 9  反向HBM模式损伤的TEM图片[33]。(a) 平面图;(b) 截面图

    Figure 9.  TEM micrographs of a device subjected to a reverse HBM event[33]. (a) Plan-view; (b) cross-section

    图 10  正向HBM模式损伤的TEM图片[33]。 (a) 平面图;(b) 截面图

    Figure 10.  TEM micrographs of a device subjected to a forward HBM event[33]. (a) Plan-view; (b) cross-section

    图 11  MM模式损伤的TEM图片[33]。(a) 平面图;(b) 截面图

    Figure 11.  TEM micrographs of a device subjected to an MM event[33]. (a) Plan-view; (b) cross-section

    图 12  CDM模式损伤的TEM图片[33]。(a) 平面图;(b) 截面图

    Figure 12.  TEM micrographs of a device subjected to a CDM event[33]. (a) Plan-view; (b) cross-section

    图 13  EOS模式损伤的TEM图片。(a) 平面图;(b) 截面图

    Figure 13.  TEM micrographs of a device subjected to an EOS event. (a) Plan-view; (b) cross-section

    图 14  VCSEL 生产车间为防止静电放电所采取的预防措施[30]

    Figure 14.  Preventive measures taken to prevent electrostatic discharge in VCSEL workshop[30]

    图 15  VCSEL和齐纳二极管封装图(Zener Diode)

    Figure 15.  VCSEL and Zener Diode package diagram

    图 16  氧化型VCSEL湿热腐蚀下的位错TEM图片[54-56]。(a)PV-TEM;(b)XS-TEM

    Figure 16.  Dislocation of oxide VCSEL under humidity corrosion[54-56]. (a) PV-TEM; (b)XS-TEM

    图 17  氧化型VCSEL湿热腐蚀下的半导体裂纹[54-56]。(a)情形1;(b)情形2

    Figure 17.  Semiconductor crack of oxide VCSELs under humidity corrosion[54-56]. (a) Case1; (b) Case2

    图 18  氧化型VCSEL湿热腐蚀下的光窗表面退化SEM图片[54-56]

    Figure 18.  SEM of aperture surface degradation of oxide VCSEL after humidity corrosion[54-56]

    图 19  VCSEL腐蚀失效机制示意图[52]

    Figure 19.  Schematic diagram of VCSEL corrosion failure mechanism[52]

    图 20  使用环氧树脂对VCSEL进行保护[25]

    Figure 20.  Coating epoxy resin to protect the VCSEL[25]

    图 21  刮伤引起DLD的示例[11]

    Figure 21.  Example of DLD caused by scratch[11]

    图 22  案例1失效样品的TEM图片。(a)整体PV-TEM;(b)局部放大图;(c)XS-TEM图片

    Figure 22.  TEM images of Case 1. (a)Overall PV-TEM. (b)Partial enlargement in the (a) dotted box. (c)XS-TEM in the (b) dotted box

    图 23  案例2失效样品的TEM图片。(a)整体PV-TEM;(b)局部放大图;(c)XS-TEM

    Figure 23.  TEM image of Case 2. (a)Overall PV-TEM. (b)Partial enlargement in the (a)dotted box. (c)XS-TEM

    图 24  案例3失效样品的PV-TEM图片

    Figure 24.  PV-TEM images of Case 3

    表  1  A summary of the easiness of formation of dislocation loops in some III-V compound semiconductors[20]

    Table  1.   A summary of the easiness of formation of dislocation loops in some III-V compound semiconductors[20]

    MaterialBand gap energy/eV@300KFormation of dislocation loops
    GaAs1.42Yes
    AlGaAs1.42~2.15Yes
    GaP2.27Yes
    GaAsP1.42~2.27Yes
    InP1.34No
    InGaAsP on InP0.75~1.34No
    InGaP on GaAs1.42~1.91Yes
    InGaAsP on GaAs1.42~1.76Yes
    下载: 导出CSV
  • [1] TONG H X, TONG C ZH, WANG Z Y, et al. Advances in the technology of 850 nm high-speed vertical cavity surface emitting lasers (invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201077. (in Chinese) doi: 10.3788/IRLA20201077
    [2] ZHANG J Y, LI X, ZHANG J W, et al. Research progress of vertical-cavity surface-emitting laser[J]. Chinese Journal of Luminescence, 2020, 41(12): 1443-1459. (in Chinese) doi: 10.37188/CJL.20200339
    [3] IGA K. Forty years of vertical-cavity surface-emitting laser: invention and innovation[J]. Japanese Journal of Applied Physics, 2018, 57(8S2): 08PA01. doi: 10.7567/JJAP.57.08PA01
    [4] HE X Y, DONG J, HU SH, et al. High-speed 850 nm vertical-cavity surface-emitting lasers with BCB planarization technique[J]. Chinese Optics, 2018, 11(2): 190-197. doi: 10.3788/co.20181102.0190
    [5] CHEN L H, YANG G W, LIU Y X. Development of semiconductor lasers[J]. Chinese Journal of Lasers, 2020, 47(5): 0500001. (in Chinese) doi: 10.3788/CJL202047.0500001
    [6] SUN T Y, XIA M J, QIAO L. Failure mechanism and detection analysis of semiconductor laser[J]. Laser &Optoelectronics Progress, 2021, 58(19): 1900003. (in Chinese)
    [7] UEDA O, PEARTON S J. Materials and Reliability Handbook for Semiconductor Optical and Electron Devices[M]. New York: Springer, 2013.
    [8] MATHES D, GUENTER J, TATUM J, et al. AOC moving forward: the impact of materials behavior[J]. Proceedings of SPIE, 2006, 6132: 613203. doi: 10.1117/12.646447
    [9] TATUM J A. Evolution of VCSELs[J]. Proceedings of SPIE, 2014, 9001: 90010C.
    [10] LOWES T D. VCSEL reliability research at gore photonics[J]. Proceedings of SPIE, 2002, 4649: 121-129. doi: 10.1117/12.469226
    [11] HERRICK R W. Oxide VCSEL reliability qualification at agilent technologies[J]. Proceedings of SPIE, 2002, 4649: 130-141. doi: 10.1117/12.469227
    [12] AEBY I, COLLINS D, GIBSON B, et al. Highly reliable oxide VCSELs for datacom applications[J]. Proceedings of SPIE, 2003, 4994: 152-161. doi: 10.1117/12.482633
    [13] TATUM J A, GUENTER J A. The VCSELS are coming[J]. Proceedings of SPIE, 2003, 4994: 1-11. doi: 10.1117/12.475724
    [14] LIU A J, WOLF P, LOTT J A, et al. Vertical-cavity surface-emitting lasers for data communication and sensing[J]. Photonics Research, 2019, 7(2): 121-136. doi: 10.1364/PRJ.7.000121
    [15] CAO Y X. Development of vertical cavity surface emitting laser modulation for data communication[J]. Journal of Physics:Conference Series, 2020, 1653(1): 012001. doi: 10.1088/1742-6596/1653/1/012001
    [16] LIU A J. Progress in single-mode and directly modulated vertical-cavity surface-emitting lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 0701005. (in Chinese) doi: 10.3788/CJL202047.0701005
    [17] JIMÉNEZ J. Laser diode reliability: crystal defects and degradation modes[J]. Comptes Rendus Physique, 2003, 4(6): 663-673. doi: 10.1016/S1631-0705(03)00097-5
    [18] HERRICK R W. Design for reliability and common failure mechanisms in vertical cavity surface emitting lasers[J]. MRS Online Proceedings Library, 2012, 1432: 9-20.
    [19] MUKHERJEE K. Materials Science of Defects in GaAs-based Semiconductor Lasers[M]. HERRICK R W, UEDA O. Reliability of Semiconductor Lasers and Optoelectronic Devices. Cambridge: Woodhead Publishing, 2021: 113-176.
    [20] UEDA O. Reliability and Degradation of III-V Optical Devices Focusing on Gradual Degradation[M]. UEDA O, PEARTON S J. Materials and Reliability Handbook for Semiconductor Optical and Electron Devices. New York, NY: Springer, 2013: 87-122.
    [21] JONES R. Do we really understand dislocations in semiconductors?[J]. Materials Science and Engineering:B, 2000, 71(1-3): 24-29. doi: 10.1016/S0921-5107(99)00344-X
    [22] KIRKBY P. Dislocation pinning in GaAs by the deliberate introduction of impurities[J]. IEEE Journal of Quantum Electronics, 1975, 11(7): 562-568. doi: 10.1109/JQE.1975.1068634
    [23] TWESTEN R D, FOLLSTAEDT D M, CHOQUETTE K D, et al. Microstructure of laterally oxidized AlxGa1−xAs layers in vertical‐cavity lasers[J]. Applied Physics Letters, 1996, 69(1): 19-21. doi: 10.1063/1.118103
    [24] CHOQUETTE K D, GEIB K M, CHUI H C, et al. Selective oxidation of buried AlGaAs versus AlAs layers[J]. Applied Physics Letters, 1996, 69(10): 1385-1387. doi: 10.1063/1.117589
    [25] HERRICK R W, DAFINCA A, FARTHOUAT P, et al. Corrosion-based failure of oxide-aperture VCSELs[J]. IEEE Journal of Quantum Electronics, 2013, 49(12): 1045-1052. doi: 10.1109/JQE.2013.2285572
    [26] STARK T J, RUSSELL P E, NEVERS C. 3-D defect characterization using plan view and cross-sectional TEM/STEM analysis[C]. ISTFA 2005: Conference Proceedings from the 31st International Symposium for Testing and Failure Analysis, ISTFA, 2005: 344-349.
    [27] CHENG Y M, HERRICK R W, PETROFF P M, et al.. Degradation mechanisms of vertical cavity surface emitting lasers[C]. Proceedings of International Reliability Physics Symposium, IEEE, 1996: 211-213.
    [28] PAO J J, WU T C, KYI W, et al. Reliability and manufacturability of 25G VCSELs with oxide apertures formed by in-situ monitoring[J]. Proceedings of SPIE, 2017, 10115: 1011519. doi: 10.1117/12.2253565
    [29] HERRICK R W. Reliability and Degradation of Vertical-Cavity Surface-Emitting Lasers[M]. UEDA O, PEARTON S J. Materials and Reliability Handbook for Semiconductor Optical and Electron Devices. New York, NY: Springer, 2013: 147-205.
    [30] HELMS C J, AEBY I, LUO W L, et al. Reliability of oxide VCSELs at Emcore[J]. Proceedings of SPIE, 2004, 5364: 183-189. doi: 10.1117/12.539282
    [31] JOHNSON R H. Passivation of VCSEL sidewalls: US, 9997892B2[P]. 2018-06-12.
    [32] ITAKURA T, SEYAMA Y, TERADA T, et al. Transmission-electron-microscopy observation of dislocation networks of oxide vertical-cavity surface-emitting lasers[J]. Optical Engineering, 2006, 45(1): 014201. doi: 10.1117/1.2150232
    [33] MATHES D T, GUENTER J, HAWKINS B, et al.. An atlas of ESD failure signatures in vertical cavity surface emitting lasers[C]. ISTFA, 2005: Conference Proceedings from the 31st International Symposium for Testing and Failure Analysis, ISTFA, 2005: 336-343.
    [34] GUENTER J, MATHES D, HAWKINS B, et al. Developments at finisar AOC[J]. Proceedings of SPIE, 2008, 6908: 690805. doi: 10.1117/12.771311
    [35] MCHUGO S A, KRISHNAN A, KRUEGER J J, et al. Characterization of failure mechanisms for oxide VCSELs[J]. Proceedings of SPIE, 2003, 4994: 55-66. doi: 10.1117/12.482637
    [36] KRUEGER J J, SABHARWAL R, MCHUGO S A, et al. Studies of ESD-related failure patterns of Agilent oxide VCSELs[J]. Proceedings of SPIE, 2003, 4994: 162-172. doi: 10.1117/12.482632
    [37] VANZI M, MURA G, MARCELLO G, et al. ESD tests on 850 nm GaAs-based VCSELs[J]. Microelectronics Reliability, 2016, 64: 617-622. doi: 10.1016/j.microrel.2016.07.023
    [38] GUENTER J K, TATUM J A, HAWTHORNE III R A, et al. VCSELs at Honeywell: the story continues[J]. Proceedings of SPIE, 2004, 5364: 34-46. doi: 10.1117/12.540129
    [39] PETROFF P, HARTMAN R L. Rapid degradation phenomenon in heterojunction GaAlAs–GaAs lasers[J]. Journal of Applied Physics, 1974, 45(9): 3899-3903. doi: 10.1063/1.1663883
    [40] MATHES D T, HULL R, CHOQUETTE K D, et al. Nanoscale materials characterization of degradation in VCSELs[J]. Proceedings of SPIE, 2003, 4994: 67-82. doi: 10.1117/12.482858
    [41] KIM T, KIM T, KIM S, et al. Degradation behavior of 850 nm AlGaAs/GaAs oxide VCSELs suffered from electrostatic discharge[J]. ETRI Journal, 2008, 30(6): 833-843. doi: 10.4218/etrij.08.0108.0148
    [42] HO K T, CHAN C H. Failure case studies of GaAs-based oxide-confined VCSELs[C]. ISTFA 2020: Papers Accepted for the Planned 46th International Symposium for Testing and Failure Analysis, ISTFA, 2020: 317-321.
    [43] HAWKINS B M, HAWTHORNE R A, GUENTER J K, et al.. Reliability of various size oxide aperture VCSELs[C]. 52nd Electronic Components and Technology Conference 2002, IEEE, 2002: 540-550.
    [44] LEI C, LI N, CHUAN X. Emcore VCSEL failure mechanism and resolution[J]. Proceedings of SPIE, 2010, 7615: 761504. doi: 10.1117/12.845968
    [45] HUANG J SH, OLSON T, ISIP E. Human-body-model electrostatic-discharge and electrical-overstress studies of buried-heterostructure semiconductor lasers[J]. IEEE Transactions on Device and Materials Reliability, 2007, 7(3): 453-461. doi: 10.1109/TDMR.2007.907425
    [46] MATHES D T. Materials issues for VCSEL operation and reliability[D]. Charlattesville, Virginia: University of Virginia, 2002.
    [47] FURUKAWA Y, KOBAYASHI T, WAKITA K, et al. Accelerated life test of AlGaAs–GaAs DH lasers[J]. Japanese Journal of Applied Physics, 1977, 16(8): 1495-1496. doi: 10.1143/JJAP.16.1495
    [48] NANNICHI Y, MATSUI J, ISHIDA K. Rapid degradation in double-heterostructure Lasers. II. semiquantitative analyses on the propagation of dark line defects[J]. Japanese Journal of Applied Physics, 1975, 14(10): 1561-1568. doi: 10.1143/JJAP.14.1561
    [49] KAMEJIMA T, ISHIDA K, MATSUI J. Injection-enhanced dislocation glide under uniaxial stress in GaAs–(GaAl)As double heterostructure laser[J]. Japanese Journal of Applied Physics, 1977, 16(2): 233-240. doi: 10.1143/JJAP.16.233
    [50] MAEDA K, SATO M, KUBO A, et al. Quantitative measurements of recombination enhanced dislocation glide in gallium arsenide[J]. Journal of Applied Physics, 1983, 54(1): 161-168. doi: 10.1063/1.331725
    [51] YONENAGA I, SUMINO K. Dislocation velocity in GeSi alloy[J]. Applied Physics Letters, 1996, 69(9): 1264-1266. doi: 10.1063/1.117386
    [52] DAFINCA A, WEIDBERG A R, MCMAHON S J, et al. Reliability and degradation of oxide VCSELs due to reaction to atmospheric water vapor[J]. Proceedings of SPIE, 2013, 8639: 86390L. doi: 10.1117/12.2001195
    [53] HERRICK R W. Reliability of vertical-cavity surface-emitting lasers[J]. Japanese Journal of Applied Physics, 2012, 51(11S): 11PC01. doi: 10.7567/JJAP.51.11PC01
    [54] XIE S N, HERRICK R W, CHAMBERLIN D, et al. Failure mode analysis of oxide VCSELs in high humidity and high temperature[J]. Journal of Lightwave Technology, 2003, 21(4): 1013-1019. doi: 10.1109/JLT.2003.809546
    [55] XIE S N, HERRICK R W, DE BRABANDER G N, et al. Reliability and failure mechanisms of oxide VCSELs in non-hermetic enviroments[J]. Proceedings of SPIE, 2003, 4994: 173-180. doi: 10.1117/12.480281
    [56] XIE S N, DE BRABANDER G, WIDJAJA W, et al.. Reliability of oxide VCSELs in non-hermetic environments[C]. The 15th Annual Meeting of the IEEE Lasers and Electro-optics Society, IEEE, 2002: 544-545.
    [57] DREYBRODT J, MALACARNE F. Failure mechanism of VCSELs in optical mouse applications at non-hermitic conditions[C]. 2015 IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits, IEEE, 2015.
    [58] WEIDBERG A R. VCSEL reliability in ATLAS and development of robust arrays[J]. Journal of Instrumentation, 2012, 7(1): C01098.
    [59] COOKE M S. Studies of VCSEL failures in the optical readout systems of the ATLAS silicon trackers and liquid argon calorimeters[J]. arXiv:, 1109, 6679: 2011.
    [60] SIEGELIN F. Failure analysis of vertical cavity surface emission laser diodes[J]. Microelectronics Reliability, 2004, 44(9-11): 1593-1597. doi: 10.1016/j.microrel.2004.07.075
    [61] WATERS R G. Diode laser degradation mechanisms: a review[J]. Progress in Quantum Electronics, 1991, 15(3): 153-174. doi: 10.1016/0079-6727(91)90004-2
  • 加载中
图(24) / 表(1)
计量
  • 文章访问数:  3019
  • HTML全文浏览量:  1625
  • PDF下载量:  675
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-22
  • 修回日期:  2021-12-10
  • 录用日期:  2021-12-24
  • 网络出版日期:  2021-12-24
  • 刊出日期:  2022-03-21

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!