留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cavity ring-down spectroscopy CO gas sensor integrating principal component analysis with savitzky-golay filtering

GUO Zi-long SHI Cheng-rui DONG Yuan-yuan ZHANG Lei SUN Xiao-yuan SUN Jing-jing ZHOU Sheng

郭紫龙, 石程睿, 董媛媛, 张磊, 孙晓园, 孙静静, 周胜. 基于主成分分析和SG滤波的光腔衰荡光谱CO气体传感器[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2025-0032
引用本文: 郭紫龙, 石程睿, 董媛媛, 张磊, 孙晓园, 孙静静, 周胜. 基于主成分分析和SG滤波的光腔衰荡光谱CO气体传感器[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2025-0032
GUO Zi-long, SHI Cheng-rui, DONG Yuan-yuan, ZHANG Lei, SUN Xiao-yuan, SUN Jing-jing, ZHOU Sheng. Cavity ring-down spectroscopy CO gas sensor integrating principal component analysis with savitzky-golay filtering[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0032
Citation: GUO Zi-long, SHI Cheng-rui, DONG Yuan-yuan, ZHANG Lei, SUN Xiao-yuan, SUN Jing-jing, ZHOU Sheng. Cavity ring-down spectroscopy CO gas sensor integrating principal component analysis with savitzky-golay filtering[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0032

基于主成分分析和SG滤波的光腔衰荡光谱CO气体传感器

详细信息
  • 中图分类号: O433.5+4

Cavity ring-down spectroscopy CO gas sensor integrating principal component analysis with savitzky-golay filtering

doi: 10.37188/CO.EN-2025-0032
Funds: Supported by the National Natural Science Foundation of China (No. 62475001, No. 61905001); the Natural Science Research Project in Universities of Anhui Province (No. 2023AH050088).
More Information
    Author Bio:

    GUO Zi-long (2000—), male, from Chuzhou, Anhui, is a master’s student who obtained his bachelor’s degree from Anhui University in 2022. He mainly engages in research on cavity ring-down spectroscopy technology. E-mail: 19855101912@163.com

    ZHOU Sheng (1900—), male, born in Quzhou, Zhejiang Province, Doctor, Associate Professor, Master’s Supervisor. He obtained a doctorate degree from the Institute of Optics and Electronics, Chinese Academy of Sciences in 2017. He mainly engaged in the research of high-sensitivity laser spectroscopy technology and fiber optic biosensing technology. E-mail: optzsh@ahu.edu.cn

    Corresponding author: optzsh@ahu.edu.cn
  • 摘要:

    SG滤波器采用多项式最小二乘近似来平滑数据并估计导数,被广泛用于处理含噪声数据。然而,SG滤波器在数据边界和高频段的噪声抑制能力有限,导致信噪比(SNR)明显降低。为解决该问题,本文提出了一种将主成分分析法(PCA)与 SG滤波协同集成的新方法。这种方法避免了SG滤波较大窗口尺寸带来的过度平滑问题。所提出的PCA-SG滤波算法被应用于基于光腔衰荡光谱(CRDS)的CO气体传感系统。通过与移动平均滤波(MAF)、小波变换(WT)、卡尔曼滤波(KF)和SG滤波器进行对比,验证了PCA-SG滤波算法的性能。结果表明,与所评估的其他算法相比,该算法表现出更优异的降噪能力。衰荡信号的信噪比从11.8612 dB提升至29.0913 dB,提取的衰荡时间常数的标准差从0.037 µs降低至0.018 µs。这些结果表明,所提出的PCA-SG滤波算法有效提高了衰荡曲线数据的平滑度,证明了其可行性。

     

  • Figure 1.  Flow chat of PCA-SG algorithm for signal noise reduction.

    Figure 2.  Setup of the CO gas detection system.

    Figure 3.  Simulated absorption coefficient and absorption line intensity of CO based on the HITRAN database.

    Figure 4.  Comparison of the effects of several filtering algorithms on the simulated ring-down signal.

    Figure 5.  Comparison of the residual noise after filtering by several filtering algorithms.

    Figure 6.  Frequency domain distribution of raw noise and filtered residual noise.

    Figure 7.  Comparison of the effects of several filtering algorithms on the measured ring-down signal.

    Figure 8.  Comparison of the residual noise after filtering by several filtering algorithms.

    Figure 9.  (a)CO with different concentrations. (b)The linear fitting of concentrations.

    Figure 10.  (a)Real-time Measured and PCA-SG-Filterd ring-down time. (b)Real-time measured and PCA-SG-Filtered CO concentrations. (c)The Allan deviation plot of the filtered data.

    Table  1.   Comparison of the SNR、RMSE and R2 for the filtered signal obtained by different filtering algorithms.

    Algorithm SNR/dB RMSE R2
    Noise signal 16.2837 5.162×10−4 0.96205
    MAF(3 times) 18.8029 3.332×10−4 0.97808
    WT 21.0154 1.991×10−4 0.98691
    KF 24.3066 9.518×10−5 0.99374
    SG 32.3624 1.451×10−5 0.99904
    PCA-SG 39.9724 2.510×10−6 0.99983
    下载: 导出CSV

    Table  2.   Comparison of the SNR、RMSE and R2 for the filtered signal obtained by different filtering algorithms.

    AlgorithmSNR/dBRMSER2
    Noise signal11.86126.247×10−40.96797
    MAF(3 times)16.10812.482×10−40.97295
    WT18.31201.478×10−40.98388
    KF19.72771.136×10−40.98760
    SG21.58116.903×10−50.99247
    PCA-SG29.09131.295×10−50.99858
    下载: 导出CSV
  • [1] BROWN I J, KITIDIS V, REES A P. Simultaneous high-precision, high-frequency measurements of methane and nitrous oxide in surface seawater by cavity ring-down spectroscopy[J]. Frontiers in Marine Science, 2023, 10: 1197727. doi: 10.3389/fmars.2023.1197727
    [2] TANG R W, SONG Y SH, ZHANG H D, et al. A wide dynamic range gas analysis model with deep learning based on cavity ring-down spectroscopy[J]. Sensors and Actuators B: Chemical, 2025, 433: 137575. doi: 10.1016/j.snb.2025.137575
    [3] LI Q Y, LI J, WEI X, et al. An exploratory study on online quantification of isoprene in human breath using cavity ringdown spectroscopy in the ultraviolet[J]. Analytica Chimica Acta, 2020, 1131: 18-24. doi: 10.1016/j.aca.2020.07.056
    [4] AI Y K, LI J, LI Q Y, et al. Cavity ringdown spectroscopy of nitric oxide in the ultraviolet region for human breath test[J]. Journal of Breath Research, 2020, 14(3): 037101. doi: 10.1088/1752-7163/ab8184
    [5] XIONG F, PENG ZH M, WANG ZH, et al. Accurate measurement of trace H2S concentration based on cavity ring-down absorption spectroscopy under CO2/CO disturbance[J]. Acta Physica Sinica, 2023, 72(4): 043302. (in Chinese). doi: 10.7498/aps.72.20221851
    [6] LEE J, OH M K. Real-time ultrasensitive detection of ammonia gas using a compact CRDS spectrometer[J]. Applied Optics, 2023, 62(5): 1357-1363. doi: 10.1364/AO.477575
    [7] SONG Y SH, ZHAO J L, ZHANG X N, et al. A CNN-assisted mid-infrared high-sensitivity exhaled ammonia sensor based on cavity ring-down spectroscopy[J]. Sensors and Actuators B: Chemical, 2024, 401: 135071. doi: 10.1016/j.snb.2023.135071
    [8] SHEN M H, HWANG C H, WANG W C. Using higher steps phase-shifting algorithms and linear least-squares fitting in white-light scanning interferometry[J]. Optics and Lasers in Engineering, 2015, 66: 165-173. doi: 10.1016/j.optlaseng.2014.09.004
    [9] DING F. Least squares parameter estimation and multi-innovation least squares methods for linear fitting problems from noisy data[J]. Journal of Computational and Applied Mathematics, 2023, 426: 115107. doi: 10.1016/j.cam.2023.115107
    [10] KALLAPUR A G, BOYSON T K, PETERSEN I R, et al. Nonlinear estimation of ring-down time for a Fabry-Perot optical cavity[J]. Optics Express, 2011, 19(7): 6377-6386. doi: 10.1364/OE.19.006377
    [11] ZHENG J Y, DING F. A filtering-based recursive extended least squares algorithm and its convergence for finite impulse response moving average systems[J]. International Journal of Robust and Nonlinear Control, 2024, 34(9): 6063-6082. doi: 10.1002/rnc.7307
    [12] GOLESTAN S, RAMEZANI M, GUERRERO J M, et al. Moving average filter based phase-locked loops: performance analysis and design guidelines[J]. IEEE Transactions on Power Electronics, 2014, 29(6): 2750-2763. doi: 10.1109/TPEL.2013.2273461
    [13] ZHANG Y J, WU T, ZHANG X ZH, et al. Rayleigh lidar signal denoising method combined with WT, EEMD and LOWESS to improve retrieval accuracy[J]. Remote Sensing, 2022, 14(14): 3270. doi: 10.3390/rs14143270
    [14] LU X Y, LI Y, CHEN X, et al. Discrete wavelet transform assisted convolutional neural network equalizer for PAM VLC system[J]. Optics Express, 2024, 32(6): 10429-10443. doi: 10.1364/OE.516195
    [15] GU L, FEI ZH W, XU X B. Enhancement method of weak Lidar signal based on adaptive variational modal decomposition and wavelet threshold denoising[J]. Infrared Physics & Technology, 2022, 120: 103991.
    [16] ZHOU SH, SHEN CH Y, ZHANG L, et al. Dual-optimized adaptive Kalman filtering algorithm based on BP neural network and variance compensation for laser absorption spectroscopy[J]. Optics Express, 2019, 27(22): 31874-31888. doi: 10.1364/OE.27.031874
    [17] CHANG R J, CHEN ZH, YIN F L. Distributed kalman filtering for speech dereverberation and noise reduction in acoustic sensor networks[J]. IEEE Sensors Journal, 2023, 23(24): 31027-31037. doi: 10.1109/JSEN.2023.3328610
    [18] SCHMID M, RATH D, DIEBOLD U. Why and how savitzky-golay filters should be replaced[J]. ACS Measurement Science Au, 2022, 2(2): 185-196. doi: 10.1021/acsmeasuresciau.1c00054
    [19] ZHANG G SH, HAO H, WANG Y CH, et al. Optimized adaptive Savitzky-Golay filtering algorithm based on deep learning network for absorption spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 263: 120187. doi: 10.1016/j.saa.2021.120187
    [20] LANJEWAR M G, PANCHBHAI K G, PATLE L B. Sugar detection in adulterated honey using hyper-spectral imaging with stacking generalization method[J]. Food Chemistry, 2024, 450: 139322. doi: 10.1016/j.foodchem.2024.139322
    [21] JANA C, BANERJEE S, MAUR S, et al. Mathematical morphology-based sensing of power system disturbances using PCA-aided support vector machine[J]. IEEE Sensors Journal, 2024, 24(11): 18035-18042. doi: 10.1109/JSEN.2024.3389047
    [22] CHAKRABORTY S, PATRA I, PAL A, et al. Development of a semi-supervised machine learning based noise filter for quantum cascade laser-coupled mid-infrared spectrometer[J]. Infrared Physics & Technology, 2024, 141: 105452.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  1
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-14
  • 录用日期:  2025-06-23
  • 网络出版日期:  2025-07-22

目录

    /

    返回文章
    返回