留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Detection of co-phasing error in segmented mirror based on extended Young’s interferometry combined with Vision Transformer

LIU Yin-ling YAO Chi OUYANG Shang-tao WAN Yi-rong CHEN Mo LI Bin

刘银岭, 姚迟, 欧阳尚韬, 万亿镕, 陈莫, 李斌. 基于扩展杨氏干涉结合Vision Transformer的拼接镜共相误差检测方法研究[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2025-0030
引用本文: 刘银岭, 姚迟, 欧阳尚韬, 万亿镕, 陈莫, 李斌. 基于扩展杨氏干涉结合Vision Transformer的拼接镜共相误差检测方法研究[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2025-0030
LIU Yin-ling, YAO Chi, OUYANG Shang-tao, WAN Yi-rong, CHEN Mo, LI Bin. Detection of co-phasing error in segmented mirror based on extended Young’s interferometry combined with Vision Transformer[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0030
Citation: LIU Yin-ling, YAO Chi, OUYANG Shang-tao, WAN Yi-rong, CHEN Mo, LI Bin. Detection of co-phasing error in segmented mirror based on extended Young’s interferometry combined with Vision Transformer[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0030

基于扩展杨氏干涉结合Vision Transformer的拼接镜共相误差检测方法研究

详细信息
  • 中图分类号: O436

Detection of co-phasing error in segmented mirror based on extended Young’s interferometry combined with Vision Transformer

doi: 10.37188/CO.EN-2025-0030
Funds: Supported by National Natural Science Foundation of China (No. 12103019); Natural Science Youth Foundation of Jiangxi Province (No. 20232BAB211023)
More Information
    Author Bio:

    LIU Yinling (2000—), male, born in Shangqiu, Henan Province, M.S. graduate student, received his B.S. degree from East China Jiaotong University in 2023, and is mainly focuses on co-phasing detection of segmented mirrors. E-mail: lyl010204@163.com

    LI Bin (1989—), male, born in Yingtan, Jiangxi Province, Ph.D., Associate Professor, faculty member of School of Electrical and Mechanical Engineering, East China Jiaotong University, received his B.S. degree from Wuhan University, Wuhan in 2012, and Ph.D. degree from Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu in 2017, and is mainly focuses on co-phasing detection of segmented mirrors and terahertz spectroscopy applications. E-mail: libingioe@126.com

    Corresponding author: li_liu202312@163.comlibingioe@126.com
  • 摘要:

    由于单块镜难以达到10 m级水平,拼接镜已成为现代天文研究中不可或缺的工具。然而,为了达到单块镜的成像能力,拼接子镜之间必须保持高度共相,piston误差作为影响分段镜成像质量的关键因素,亟需进行高效、精确的检测。针对目前圆孔衍射结合双波长算法易受偏心误差干扰,传统卷积神经网络(CNN)局部感受野难以捕捉大量程误差下全局特征的问题,本文提出了一种融合扩展杨氏干涉原理与Vision Transformer(ViT)的平移误差检测新方法。通过双孔对称布局抑制偏心误差的干扰,结合589nm和600nm的双波长消模糊算法将检测量程扩展至±7.95 μm,并基于ViT的自注意力机制建模干涉条纹的全局特征,相较于CNN依赖局部卷积核的局限性,ViT 显著提高了对干涉图中周期性变化的灵敏度。仿真结果表明,该方法在高斯噪声(SNR≥15 dB)、泊松噪声(λ≥9 photons/pixel)及子镜间隙误差(Egap≤ 0.2)干扰下能够在[−7.95 μm, 7.95 μm]范围内实现5 nm的检测精度,同时保持95%以上的准确率,相较于互相关算法检测速度有较大提升。本研究为拼接镜误差检测提供了一种高精度、高鲁棒性的创新技术路线,为高精度天文观测提供了理论支持。

     

  • Figure 1.  Schematic diagram of extended Young’s interference

    Figure 2.  Theoretical interferogram of a dual-aperture system with radius r and separation D.

    Figure 3.  Schematic diagram of ViT network architecture

    Figure 4.  Representative dataset samples

    Figure 5.  Learning rate curve

    Figure 6.  Accuracy and loss curves (a) Training phase; (b) Validation phase

    Figure 7.  Noisy sample images (a) AGWN with Signal-to-Noise Ratio (SNR) = 10 dB; (b) Salt-and-Pepper noise with density p=0.1; (c) Poisson noise with photon flux λ=9 photons/pixel

    Figure 8.  Distribution of test sample predictions under different levels of AGWN

    Figure 9.  Distribution of test sample predictions under different levels of Salt-and-Pepper noise

    Figure 10.  Distribution of test sample predictions under different levels of Poisson noise

    Figure 11.  Theoretical interference pattern with different gap errors for piston=0 and λ

    Figure 12.  Distribution of prediction results of test samples with different gap error

    Figure 13.  Accuracy and loss curves after dataset expansion (a) Training process; (b) Validation process

    Figure 14.  Effect of horizontal vibration on interference pattern and distribution of predicted results for test samples

    Figure 15.  Effect of vertical vibration on interference pattern and distribution of predicted results for test samples

    Table  1.   Composition of the dataset containing gap error

    Piston tip\tilt gap Train
    datasets
    Valid
    datasets
    [−7.95, 7.95] [−0.03λ, 0.03λ] [0.8r, 1.2r] 47715 15905
    下载: 导出CSV

    Table  2.   Comparison with other algorithms

    Literature Operating
    wavelength
    Detection
    range
    Detection
    accuracy
    Anti- Decentration
    Error
    generalization
    capability
    response
    time
    B. Li,2019 580 nm, 650 nm 2.9 μm 32 nm weak weak 942s
    Guerra-Ramos
    D, 2018
    λ0=700 nm,
    0.930λ0
    ±11λ0 ±0.0087λ0 -- medium --
    X.-F. Ma, 2020 500-600 nm
    (λ0=600 nm)
    (0, 10λ) 0.02λ0 -- medium --
    Y.-R. Wang, 2021 632 nm (−0.5λ, 0.5λ) 0.0065λ -- medium --
    A.-K. Yang, 2023 737 nm, 750 nm (−14λ, 14λ) 0.0083λ0 weak medium 75s
    ViT 589 nm, 600 nm (−13.25λ, 13.25λ) 0.0083λ0 strong strong 26.8s
    下载: 导出CSV
  • [1] AN Q C, LIU X Y, LI H W, et al. Sparse aperture testing method for large-aperture segmented telescopes (invited)[J]. Acta Optica Sinica (Online), 2025, 2(6): 0614001. (in Chinese).
    [2] VAN DAM M A, LE MIGNANT D, MACINTOSH B A. Performance of the Keck Observatory adaptive-optics system[J]. Applied Optics, 2004, 43(29): 5458-5467. doi: 10.1364/AO.43.005458
    [3] PADOVANI P, CIRASUOLO M. The extremely large telescope[J]. Contemporary Physics, 2023, 64(1): 47-64. doi: 10.1080/00107514.2023.2266921
    [4] RIEKE G H, WRIGHT G S, BÖKER T, et al. The mid-infrared instrument for the James Webb space telescope, I: introduction[J]. Publications of the Astronomical Society of the Pacific, 2015, 127(953): 584-594. doi: 10.1086/682252
    [5] KIM D, CHOI H, BRENDEL T, et al. Advances in optical engineering for future telescopes[J]. Opto-Electronic Advances, 2021, 4(6): 210040. doi: 10.29026/oea.2021.210040
    [6] XIE Z L, MA H T, QI B, et al. Experimental demonstration of enhanced resolution of a Golay3 sparse-aperture telescope[J]. Chinese Optics Letters, 2017, 15(4): 041101. doi: 10.3788/COL201715.041101
    [7] LI Y, WANG S Q, RAO C H. Dispersed-fringe-accumulation-based left-subtract-right method for fine co-phasing of a dispersed fringe sensor[J]. Applied Optics, 2017, 56(15): 4267-4273. doi: 10.1364/AO.56.004267
    [8] ZHANG Y F, XIAN H. Piston sensing via a dispersed fringe sensor with a merit-function-based active scanning algorithm at low light levels[J]. Chinese Optics Letters, 2019, 17(12): 121101. doi: 10.3788/COL201917.121101
    [9] WANG X H, FU Q, HUANG L H, et al. Experimental research on application of Hartmann micro-lens array in coherent beam combination of two-dimensional laser array[J]. Chinese Optics Letters, 2012, 10(8): 081402. doi: 10.3788/COL201210.081402
    [10] ZHANG D, ZHANG X B, XU S Y, et al. Simplified Phase Diversity algorithm based on a first-order Taylor expansion[J]. Applied Optics, 2016, 55(28): 7872-7877. doi: 10.1364/AO.55.007872
    [11] LI B, LIU Y L, YANG A K, et al. Study on the co-phasing simulation and experimental of segmented mirror based on broadband light[J]. Journal of Modern Optics, 2024, 71(1-3): 42-51. doi: 10.1080/09500340.2024.2394954
    [12] DUMONT M, CORREIA C M, SAUVAGE J F, et al. Phasing segmented telescopes via deep learning methods: application to a deployable CubeSat[J]. Journal of the Optical Society of America A, 2024, 41(3): 489-499. doi: 10.1364/JOSAA.506182
    [13] GUERRA-RAMOS D, DÍAZ-GARCÍA L, TRUJILLO-SEVILLA J, et al. Piston alignment of segmented optical mirrors via convolutional neural networks[J]. Optics Letters, 2018, 43(17): 4264-4267. doi: 10.1364/OL.43.004264
    [14] GUERRA-RAMOS D, TRUJILLO-SEVILLA J, RODRÍGUEZ-RAMOS J M. Global piston restoration of segmented mirrors with recurrent neural networks[J]. OSA Continuum, 2020, 3(5): 1355-1363. doi: 10.1364/OSAC.387358
    [15] LI D Q, XU S Y, WANG D, et al. Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks[J]. Optics Letters, 2019, 44(5): 1170-1173. doi: 10.1364/OL.44.001170
    [16] LI D Q, WANG D, LI J Q. Large range of a high-precision, independent, sub-mirror three-dimensional co-phase error sensing and correction method via a mask and population algorithm[J]. Sensors, 2024, 24(1): 279. doi: 10.3390/s24010279
    [17] LI D Q, WANG D, YAN D J. Piston error automatic correction for segmented mirrors via deep reinforcement learning[J]. Sensors, 2024, 24(13): 4236. doi: 10.3390/s24134236
    [18] MA X F, XIE Z L, MA H T, et al. Piston sensing of sparse aperture systems with a single broadband image via deep learning[J]. Optics Express, 2019, 27(11): 16058-16070. doi: 10.1364/OE.27.016058
    [19] MA X F, XIE Z L, MA H T, et al. Piston sensing for sparse aperture systems with broadband extended objects via a single convolutional neural network[J]. Optics and Lasers in Engineering, 2020, 128: 106005. doi: 10.1016/j.optlaseng.2020.106005
    [20] HUI M, LI W Q, LIU M, et al. Object-independent piston diagnosing approach for segmented optical mirrors via deep convolutional neural network[J]. Applied Optics, 2020, 59(3): 771-778. doi: 10.1364/AO.379194
    [21] HUI M, LI W Q, WU Y, et al. Breadth-first piston diagnosing approach for segmented mirrors through supervised learning of multiple-wavelength images[J]. Applied Optics, 2020, 59(32): 9963-9970. doi: 10.1364/AO.402943
    [22] WANG Y R, ZHANG C Y, GUO L, et al. Decoupled object-independent image features for fine phasing of segmented mirrors using deep learning[J]. Remote Sensing, 2022, 14(18): 4681. doi: 10.3390/rs14184681
    [23] LI B, YANG A K, LI Y B, et al. Research on co-phasing detection of segmented mirror based on convolutioned neural networks[J]. Optics & Laser Technology, 2023, 167: 109737.
    [24] CHENG K K, WANG S Q, LIU X S, et al. Co-phase error detection for segmented mirrors based on far-field information and transfer learning[J]. Photonics, 2024, 11(11): 1064. doi: 10.3390/photonics11111064
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-27
  • 录用日期:  2025-07-03
  • 网络出版日期:  2025-07-22

目录

    /

    返回文章
    返回