Ultrafast erbium-doped fiber laser modulated by Nb4AlC3 saturable absorber
doi: 10.37188/CO.EN-2024-0032
-
摘要:
本文采用MAX相(MAX-PM)材料Nb4AlC3作为可饱和吸收体(SA),实现了传统孤子(CS)锁模掺铒光纤(EDF)激光器。首先,利用液相剥离(LPE)法制备了Nb4AlC3纳米片,然后采用拉锥光纤制作了Nb4AlC3-SA。该Nb4AlC3可饱和吸收体的饱和强度和调制深度分别为2.02 MW/cm2和1.88%。基于所制备的Nb4AlC3可饱和吸收体,实现了传统孤子锁模掺铒光纤激光器。该激光器的中心波长、脉冲持续时间和脉冲重复率分别为
1565.65 nm、615.37 fs和24.63 MHz。该锁模激光器性能优越,特别是在脉冲持续时间方面表现优异。据我们所知,这是首次将Nb4AlC3材料用作可饱和吸收体实现超快脉冲光纤激光器的报道。本研究充分证实Nb4AlC3具有优异的非线性可饱和吸收特性,同时也为空间稳定型超快光子器件的深入研究拓宽了途径。-
关键词:
- 传统孤子 (CS) /
- Nb4AlC3 /
- 掺铒光纤 (EDF) 激光器 /
- 可饱和吸收体 (SA)
Abstract:In this paper, a conventional soliton (CS) mode-locked erbium-doped fiber (EDF) laser was realized using MAX phase material (MAX-PM) Nb4AlC3 as a saturable absorber (SA). First, the liquid phase exfoliation (LPE) method was utilized to prepare Nb4AlC3 nanosheets, and then a piece of tapered fiber was adopted to fabricate Nb4AlC3-SA. It was found that the saturation intensity and modulation depth of the Nb4AlC3-SA are 2.02 MW/cm2 and 1.88 %. Based on the Nb4AlC3-SA, a conventional soliton (CS) mode-locked EDF laser was achieved. The central wavelength, pulse duration, and pulse repetition rate were found to be
1565.65 nm, 615.37 fs, and 24.63 MHz, respectively. The performance is competitive and particularly superior in terms of pulse duration. To the researchers’ knowledge, this is the first report of Nb4AlC3 material used as a modulator for ultrafast pulse generation. This study fully confirms that Nb4AlC3 possesses marvellous nonlinear saturable absorption properties and opens new possibilities for further research on air-stable ultrafast photonic devices. -
Table 1. - Comparison of EDF lasers mode locked by various MAX-PM-based SAs.
SAs Modulation depth ( ∆T)
(%)Repetition rate ( f)
(MHz)3 dB bandwidth (Δλ)
(nm)Pulse duration (Δt)
(ps)SNR
(dB)Output power
(mW)Refs Ti2CTx 15.7 8.25 3.4 5.3 62 6.95 [43] Ti3C2Tx 0.96 218.36 3.51 0.85 36 ~ 1 [44] V2CTx 3.1 1010.0 3.1 0.94 55 ~ 25 [45] Ti3AlC2 2 1.89 0.7 3.68 52.3 15.38 [46] Ti2AlC 2.21 16.7 3.8 0.68 64.6 2.7 [47] V2AlC 18 14.98 3.4 0.85 58 3.95 [48] Nb2AlC 2.62 58.6 0.2 5.8 58 2.07 [49] Nb4AlC3 1.88 24.63 7.78 0.615 56.2 6.45 Our work -
[1] DEBEUF M P, KNOOPS K, LÓPEZ-IGLESIAS C, et al. Long-term remission of Hailey-Hailey disease by Er: YAG ablative laser therapy[J]. Journal of the European Academy of Dermatology and Venereolog, 2024, 03849989. (查阅网上资料, 未找到卷期页码信息, 请确认补充) . [2] CASAMENTI E, POLLONGHINI S, BELLOUARD Y, et al. Few pulses femtosecond laser exposure for high efficiency 3D glass micromachining[J]. Optics Express, 2021, 29(22): 35054-35066. doi: 10.1364/OE.435163 [3] HUI ZH Q, BU X F, WANG Y H, et al. Bi2O2Te Nanosheets saturable absorber-based passive mode-locked fiber laser: from soliton molecules to harmonic soliton[J]. Advanced Optical Materials, 2022, 10(24): 2201812. doi: 10.1002/adom.202201812 [4] XING X W, LIU Y X, HAN J F, et al. Preparation of high damage threshold device based on Bi2Se3 film and its application in fiber lasers[J]. ACS Photonics, 2023, 10(7): 2264-2271. doi: 10.1021/acsphotonics.2c01375 [5] NISHIZAWA N, KITAJIMA S, SAKAKIBARA Y. Spectral peaking in an ultrashort-pulse fiber laser oscillator with a molecular gas cell[J]. Optics Letters, 2022, 47(10): 2422-2425. doi: 10.1364/OL.458643 [6] KELLER U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950): 831-838. doi: 10.1038/nature01938 [7] HAN Y, GUO Y B, GAO B, et al. Generation, optimization, and application of ultrashort femtosecond pulse in mode-locked fiber lasers[J]. Progress in Quantum Electronics, 2020, 71: 100264. doi: 10.1016/j.pquantelec.2020.100264 [8] RENNINGER W H, CHONG A, WISE F W. Giant-chirp oscillators for short-pulse fiber amplifiers[J]. Optics Letters, 2008, 33(24): 3025-3027. doi: 10.1364/OL.33.003025 [9] YUN L, LIU X M. Generation and propagation of bound-state pulses in a passively mode-locked figure-eight laser[J]. IEEE Photonics Journal, 2012, 4(2): 512-519. doi: 10.1109/JPHOT.2012.2191948 [10] CUI Y D, LIU X M. Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons[J]. Optics Express, 2013, 21(16): 18969-18974. doi: 10.1364/OE.21.018969 [11] YANG Y, WANG CH R, HAN M M, et al. Wavelength convertible flat/tilt-top dissipative- soliton-resonance pulses in an anomalous dispersion fiber laser[J]. Journal of Lightwave Technology, 2024, 42(19): 6925-6931. doi: 10.1109/JLT.2024.3413894 [12] HAN D D, MEI L ZH, HUI ZH Q, et al. Flexible wavelength-, pulse-controlled mode-locked all-fiber laser based on a fiber Lyot filter[J]. Optics Express, 2022, 30(23): 41271-41278. [13] LIU X, CHU H W, XU M J, et al. Reverse saturable absorption in Ti3C2 MXene nanosheets for dissipative soliton resonance mode-locking operation in Er-doped fiber laser[J]. Optical Materials, 2023, 136: 113463. doi: 10.1016/j.optmat.2023.113463 [14] SHANG X X, ZHANG Y L, LI T, et al. Nonlinear optical response of niobium telluride and its application for demonstrating pulsed fiber lasers[J]. Journal of Materiomics, 2024, 10(2): 355-365. doi: 10.1016/j.jmat.2023.05.015 [15] LI L, XUE Z, PANG L H, et al. Saturable absorption properties and ultrafast photonics applications of HfS3[J]. Optics Letters, 2024, 49(5): 1293-1296. doi: 10.1364/OL.513573 [16] ZHANG H, BAO Q L, TANG D Y, et al. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker[J]. Applied Physics Letters, 2009, 95(14): 141103. doi: 10.1063/1.3244206 [17] WANG L R, LIU X M, GONG Y K. Giant-chirp oscillator for ultra-large net-normal-dispersion fiber lasers[J]. Laser Physics Letters, 2010, 7(1): 63-67. doi: 10.1002/lapl.200910109 [18] CHENG C H, LIN G R. Carbon nanomaterials based saturable absorbers for ultrafast passive mode-locking of fiber lasers[J]. Current Nanoscience, 2020, 16(3): 441-457. doi: 10.2174/1573413715666191114150100 [19] ZHANG X, XING X W, LI J, et al. Controllable epitaxy of quasi-one-dimensional topological insulator α-Bi4Br4 for the application of saturable absorber[J]. Applied Physics Letters, 2022, 120(9): 093103. doi: 10.1063/5.0083807 [20] LIU W J, LIU M L, LIU X M, et al. Recent advances of 2D materials in nonlinear photonics and fiber lasers[J]. Advanced Optical Materials, 2020, 8(8): 1901631. doi: 10.1002/adom.201901631 [21] QI Y Y, YANG S, WANG J J, et al. Recent advance of emerging low-dimensional materials for vector soliton generation in fiber lasers[J]. Materials Today Physics, 2022, 23: 100622. doi: 10.1016/j.mtphys.2022.100622 [22] LIU Y ZH, SUN L, ZHENG B CH, et al. Anisotropic elastic, thermal properties and electronic structures of M2AlB2(M=Fe, Cr, and Mn) layer structure ceramics[J]. Ceramics International, 2021, 47(1): 1421-1428. doi: 10.1016/j.ceramint.2020.08.266 [23] BADIE S, SEBOLD D, VAßEN R, et al. Mechanism for breakaway oxidation of the Ti2AlC MAX phase[J]. Acta Materialia, 2021, 215: 117025. doi: 10.1016/j.actamat.2021.117025 [24] LEI X, LIN N M. Structure and synthesis of MAX phase materials: a brief review[J]. Critical Reviews in Solid State and Materials Sciences, 2022, 47(5): 736-771. doi: 10.1080/10408436.2021.1966384 [25] LIU G T, LI Z F, GAO W H, et al. Oxidation mechanism and mechanical properties of substitutional transition metal modified Nb4AlC3: a first-principles density functional theory study[J]. Ceramics International, 2023, 49(17): 29141-29154. doi: 10.1016/j.ceramint.2023.06.194 [26] TALLMAN D J, ANASORI B, BARSOUM M W. A critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in air[J]. Materials Research Letters, 2013, 1(3): 115-125. doi: 10.1080/21663831.2013.806364 [27] BARSOUM M W. The Mn+1AXn phases: a new class of solids[J]. Progress in Solid State Chemistry, 2000, 28(1-4): 201-281. doi: 10.1016/S0079-6786(00)00006-6 [28] LOW I M. Advances in Science and Technology of Mn+1AXn Phases[M]. Amsterdam: Elsevier, 2012. [29] EKLUND P, BECKERS M, JANSSON U, et al. The M n+1AX n phases: materials science and thin-film processing[J]. Thin Solid Films, 2010, 518(8): 1851-1878. doi: 10.1016/j.tsf.2009.07.184 [30] JHANG W L, LI C J, WANG A SH, et al. Tunable optical property of plasmonic-polymer nanocomposites composed of multilayer nanocrystal arrays stacked in a homogeneous polymer matrix[J]. ACS Applied Materials & Interfaces, 2020, 12(46): 51873-51884. [31] CHING W Y, MO Y X, ARYAL S, et al. Intrinsic mechanical properties of 20 MAX‐phase compounds[J]. Journal of the American Ceramic Society, 2013, 96(7): 2292-2297. doi: 10.1111/jace.12376 [32] ZHAO ZH Y, DU B J, REN Z H, et al. Two-dimensional Nb4AlC3(MAX) and Nb4C3(MXene): excellent optical limiting materials with oppositely applicated waveband[J]. ACS Applied Nano Materials, 2024, 7(3): 2775-2785. doi: 10.1021/acsanm.3c04990 [33] KUMAR P, DEY A, ROQUES J, et al. Photoexfoliation synthesis of 2D materials[J]. ACS Materials Letters, 2022, 4(2): 263-270. doi: 10.1021/acsmaterialslett.1c00651 [34] SHI Y M, LI H N, LI L J, et al. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques[J]. Chemical Society Reviews, 2015, 44(9): 2744-2756. doi: 10.1039/C4CS00256C [35] JAWAID A, NEPAL D, PARK K, et al. Mechanism for liquid phase exfoliation of MoS2[J]. Chemistry of Materials, 2016, 28(1): 337-348. doi: 10.1021/acs.chemmater.5b04224 [36] LI L CH, ZHOU M, JIN L, et al. Green preparation of aqueous graphene dispersion and study on its dispersion stability[J]. Materials, 2020, 13(18): 4069. doi: 10.3390/ma13184069 [37] HARUN S W, LIM K S, AHMAD H. Investigation of dispersion characteristic in tapered fiber[J]. Laser Physics, 2011, 21(5): 945-947. doi: 10.1134/S1054660X11090118 [38] JIANG X W, LV W H, XU Y, et al. Kerr lens mode locked operation in an erbium-doped fiber laser modulated by silica tapered fiber[J]. Optical Fiber Technology, 2024, 84: 103725. doi: 10.1016/j.yofte.2024.103725 [39] HONG ZH F, ZHANG M X, JIANG X W, et al. Generation of soliton molecules in mode-locked erbium-doped fiber laser by InSb saturable absorber[J]. Infrared Physics & Technology, 2023, 129: 104540. [40] HU CH F, LI F ZH, ZHANG J, et al. Nb4AlC3: a new compound belonging to the MAX phases[J]. Scripta Materialia, 2007, 57(10): 893-896. doi: 10.1016/j.scriptamat.2007.07.038 [41] GUO B, XIAO Q L, WANG SH H, et al. 2D layered materials: synthesis, nonlinear optical properties, and device applications[J]. Laser & Photonics Reviews, 2019, 13(12): 1800327. [42] SHANG J CH, ZHAO SH ZH, LIU Y ZH, et al. . Separation and amplification of Kelly sidebands and main soliton pulse in a 2-μm ultrafast fiber chirped pulse amplifier[J]. Infrared Physics & Technology, 2022, 127: 104455. [43] YI J, DU L, LI J, et al. Unleashing the potential of Ti2CT x MXene as a pulse modulator for mid-infrared fiber lasers[J]. 2D Materials, 2019, 6(4): 045038. doi: 10.1088/2053-1583/ab39bc [44] FENG J J, LI X H, FENG T C, et al. Harmonic mode‐locked Er‐doped fiber laser by evanescent field‐based MXene Ti3C2T x (T= F, O, or OH) saturable absorber[J]. Annalen der Physik, 2020, 532(1): 1900437. doi: 10.1002/andp.201900437 [45] HUANG W CH, MA CH Y, LI CH, et al. Highly stable MXene (V2CTx)-based harmonic pulse generation[J]. Nanophotonics, 2020, 9(8): 2577-2585. doi: 10.1515/nanoph-2020-0134 [46] AHMAD H, KAMELY A A, YUSOFF N, et al. Generation of Q-switched pulses in thulium-doped and thulium/holmium-co-doped fiber lasers using MAX phase (Ti3AlC2)[J]. Scientific Reports, 2020, 10(1): 9233. doi: 10.1038/s41598-020-66141-3 [47] SUN G Q, FENG M, ZHANG K, et al. Q-switched and mode-locked Er-doped fiber laser based on MAX phase Ti2AlC saturable absorber[J]. Results in Physics, 2021, 26: 104451. doi: 10.1016/j.rinp.2021.104451 [48] LEE J, KWON S Y, LEE J H. Harmonically mode-locked Er-doped fiber laser at 1.3 GHz using a V2AlC MAX phase nanoparticle-based saturable absorber[J]. Optics & Laser Technology, 2022, 145: 107525. [49] ZHANG K, FENG M, SUN G Q, et al. Q-switched and noise-like mode-locked fiber laser based on ternary transition-metal carbide Nb2AlC saturable absorber[J]. Optics & Laser Technology, 2023, 162: 109237. -