留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of tilt-to-length coupling noise: Exploring the influence of multiple factors in test mass interferometers

ZHAO Meng-yuan SHEN Jia PENG Xiao-dong MA Xiao-shan YANG Zhen LIU He-shan MENG Xin ZHANG Jia-feng

赵梦园, 沈嘉, 彭晓东, 马晓珊, 杨震, 刘河山, 孟新, 张佳锋. 测试质量干涉仪抖动光程耦合噪声的多因素影响分析[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2024-0031
引用本文: 赵梦园, 沈嘉, 彭晓东, 马晓珊, 杨震, 刘河山, 孟新, 张佳锋. 测试质量干涉仪抖动光程耦合噪声的多因素影响分析[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2024-0031
ZHAO Meng-yuan, SHEN Jia, PENG Xiao-dong, MA Xiao-shan, YANG Zhen, LIU He-shan, MENG Xin, ZHANG Jia-feng. Analysis of tilt-to-length coupling noise: Exploring the influence of multiple factors in test mass interferometers[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0031
Citation: ZHAO Meng-yuan, SHEN Jia, PENG Xiao-dong, MA Xiao-shan, YANG Zhen, LIU He-shan, MENG Xin, ZHANG Jia-feng. Analysis of tilt-to-length coupling noise: Exploring the influence of multiple factors in test mass interferometers[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0031

测试质量干涉仪抖动光程耦合噪声的多因素影响分析

详细信息
  • 中图分类号: TP394.1;TH691.9

Analysis of tilt-to-length coupling noise: Exploring the influence of multiple factors in test mass interferometers

doi: 10.37188/CO.EN-2024-0031
Funds: Supported by
More Information
    Author Bio:

    ZHAO Meng-yuan (1996—), a PhD graduate from Key Laboratory of Electronics and Information Technology for Space Systems in the National Space Science Center, Chinese Academy of Sciences, and is currently employed at the School of Information, Xi’an University of Finance and Economics. Her research interest is the high-precision simulation, analysis, and evaluation of space missions. E-mail: 2023010027@xaufe.edu.cn

    MA Xiao-shan, a professor at the Institute of Engineering Thermophysics, Chinese Academy of Sciences. Her research interest is combustion diagnostic technology. E-mail: maxiaoshan@iet.cn

    Corresponding author: maxiaoshan@iet.cn
  • 摘要:

    在基于外差干涉原理的空间引力波探测任务中,抖动光程耦合噪声是一个重要的光学噪声源,对测量系统的精度产生显著影响。本文提出了一种分析多种因素共同作用下抖动光程耦合噪声的方法。首先设计了一个等效的测试质量干涉仪仿真光学平台,并采用高斯光束追踪模拟光束传播。通过模拟干涉信号,可以分析各种因素对抖动光程耦合噪声的影响,包括位置因素、光束参数因素、探测器参数因素和信号定义因素。在此基础上,在满足分析要求的参数范围内,构建了由多个影响因素组成的随机参数空间,并通过基于方差的全局敏感性分析对随机采样得到的模拟结果进行评估。主要效应指数和总效应指数的计算结果表明,测试质量的旋转角度和活塞效应(径向)对测试质量干涉仪中的抖动光程耦合噪声有显著影响。这一结论为空间激光干涉测量系统的设计和优化提供了定性参考。

     

  • Figure 1.  Schematic diagram of the simulated optical bench for the test mass interferometer. The left upper corner shows the coordinates of the optical bench, with the detailed coordinates and normal vectors of every optical component in Table 1

    Figure 2.  Schematic illustration of positional factors (a) The offset between the measurement and reference beam (b) The piston effect (c) The test mass shift and rotation

    Figure 3.  The experimental setup schematic. Components included: acousto-optical modulator (AOM), polarizing beam splitter (PBS), half wave plate (λ/2), quarter wave plate (λ/4), beam splitter (BS), stationary mirror (Ref M), fine steering mirror (FSM)

    Figure 4.  Comparison of experimental data and simulation data

    Figure 5.  Histograms of LPS with LPF and AP definitions in 10,000 simulations

    Figure 6.  Visualization of the main effect index (S1) for the LPF definition

    Figure 7.  Visualization of the total effect index (ST) for the AP definition

    Table  1.   The type, position, and orientation of each component in the simulated optical bench used to analyze TTL coupling

    Label Component Name Center coordinate
    cm
    Normal Vector
    Laser Laser (0,0,0) (1,0,0)
    BS Beam splitter (25,0,0) (−1,0,0)
    M Mirror (25,50,0) (0,−1,0)
    TM Test mass (50,0,0) (1,0,0)
    QPD Quadrant photodiode (25,-25,0) (0,1,0)
    下载: 导出CSV

    Table  2.   Physical parameters list

    Parameter descriptionValue
    Reference beam waist0.5 mm
    Distance from reference beam waist0
    Reference beam frequency2.8195×108 MHz +120 MHz
    Measurement beam waist0.5 mm
    distance from measurement beam waist0 mm
    Measurement beam frequency2.8195×108 MHz +
    120 MHz+1.6 MHz
    QPD radius1 cm
    QPD slit size50 µm
    下载: 导出CSV

    Table  3.   Comparison of rotation angle (µrad) and relative error (%)

    Rotation Angle (µrad)Relative Error (%)
    1003.78
    2002.84
    3003.69
    4002.24
    下载: 导出CSV

    Table  4.   Parameter space for multiple factor analysis

    Factors Parameter Range
    PositionalBeam offset(0 μm, 100 μm)
    Piston effect (lateral)(0 mm, 1 mm)
    Piston effect (longitudinal)(0 mm, 1 mm)
    Test mass lateral shift(0 μm, 100 μm)
    Test mass longitudinal shift(0 μm, 100 μm)
    Rotation angle(0 μrad, 100 μrad)
    Beam
    parameter
    Measurement beam waist(0.5mm, 1 mm)
    The distance from the waist
    of the measurement beam
    (0 mm, 50 mm)
    Detector
    parameter
    QPD slit(0 μm, 100 μm)
    下载: 导出CSV

    Table  5.   Maximum (absolute value) and minimum (absolute value) of the LPS with both LPF and AP in 10,000 simulations.

    Signal definitionMaximumMinimum
    LPF9.6939×105 pm6.4400 pm
    AP9.1285×105 pm14.7801 pm
    下载: 导出CSV

    Table  6.   Main effect index S1 and total effect index ST for different parameters (LPF definition)

    Factors Parameter S1 ST
    PositionalBeam offset0.000370.00023
    Piston effect (lateral)0.015160.21815
    Piston effect (longitudinal)8.8911×10−75.3478×10−9
    Test mass lateral shift0.000960.00217
    Test mass longitudinal shift1.0968×10−75.9016×10-11
    Rotation angle0.753500.99122
    Beam
    parameter
    Measurement beam waist0.000810.00240
    Distance from the
    measurement beam’s waist
    5.8822×10−63.1740×10−7
    Detector
    parameter
    QPD slit0.000170.00028
    下载: 导出CSV

    Table  7.   Main effect index S1 and total effect index ST for different parameters (AP definition)

    Factors Parameter S1 ST
    PositionalBeam offset0.000930.00047
    Piston effect (lateral)0.014090.21586
    Piston effect (longitudinal)1.6607×10−65.29173×10−9
    Test mass lateral shift-0.001170.00214
    Test mass longitudinal shift1.6703×10−77.6198×10-11
    Rotation angle0.759880.99156
    Beam
    parameter
    Measurement beam waist0.000850.00039
    Distance from the
    measurement beam’s waist
    2.1826×10−65.2593×10−8
    Detector
    parameter
    QPD slit0.000730.00035
    下载: 导出CSV
  • [1] AMARO-SEOANE P, AUDLEY H, BABAK S, et al. Laser interferometer space antenna[J]. arXiv preprint arXiv: 1702.00786, 2017. (查阅网上资料, 请核对文献类型及格式) .
    [2] LUO Z R, ZHANG M, JIN G, et al. Introduction of Chinese space-borne gravitational wave detection program “Taiji” and “Taiji-1” satellite mission[J]. Journal of Deep Space Exploration, 2020, 7(1): 3-10.
    [3] LUO J, CHEN L SH, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010. doi: 10.1088/0264-9381/33/3/035010
    [4] OTTO M. Time-delay interferometry simulations for the laser interferometer space antenna[D]. Hannover: Gottfried Wilhelm Leibniz Universität Hannover, 2015.
    [5] SCHUSTER S, WANNER G, TRÖBS M, et al. Vanishing tilt-to-length coupling for a singular case in two-beam laser interferometers with Gaussian beams[J]. Applied Optics, 2015, 54(5): 1010-1014. doi: 10.1364/AO.54.001010
    [6] WANG L Y, LI Y Q, CAI R. Noise suppression of tilt-to-length coupling in space laser interferometer[J]. Optics and Precision Engineering, 2021, 29(7): 1491-1498. (in Chinese). doi: 10.37188/OPE.20212907.1491
    [7] CHWALLA M, DANZMANN K, BARRANCO G F, et al. Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling[J]. Classical and Quantum Gravity, 2016, 33(24): 245015. doi: 10.1088/0264-9381/33/24/245015
    [8] SCHUSTER S. Tilt-to-length coupling and diffraction aspects in satellite interferometry[D]. Hannover: Gottfried Wilhelm Leibniz Universität Hannover, 2017.
    [9] HARTIG M S, SCHUSTER S, WANNER G. Geometric tilt-to-length coupling in precision interferometry: mechanisms and analytical descriptions[J]. Journal of Optics, 2022, 24(6): 065601. doi: 10.1088/2040-8986/ac675e
    [10] HARTIG M S, SCHUSTER S, HEINZEL G, et al. Non-geometric tilt-to-length coupling in precision interferometry: mechanisms and analytical descriptions[J]. Journal of Optics, 2023, 25(5): 055601. doi: 10.1088/2040-8986/acc3ac
    [11] ZHAO Y, WANG ZH, LI Y P, et al. Method to remove tilt-to-length coupling caused by interference of flat-top beam and Gaussian beam[J]. Applied Sciences, 2019, 9(19): 4112. doi: 10.3390/app9194112
    [12] WANNER G, SCHUSTER S, TRÖBS M, et al. A brief comparison of optical pathlength difference and various definitions for the interferometric phase[J]. Journal of Physics: Conference Series, 2015, 610: 012043. doi: 10.1088/1742-6596/610/1/012043
    [13] SASSO C P, MANA G, MOTTINI S. Coupling of wavefront errors and pointing jitter in the LISA interferometer: misalignment of the interfering wavefronts[J]. Classical and Quantum Gravity, 2018, 35(24): 245002. doi: 10.1088/1361-6382/aaea0f
    [14] ZHAO Y, SHEN J, FANG CH, et al. Tilt-to-length noise coupled by wavefront errors in the interfering beams for the space measurement of gravitational waves[J]. Optics Express, 2020, 28(17): 25545-25561. doi: 10.1364/OE.397097
    [15] ZHAO Y, SHEN J, FANG CH, et al. Far-field optical path noise coupled with the pointing jitter in the space measurement of gravitational waves[J]. Applied Optics, 2021, 60(2): 438-444. doi: 10.1364/AO.405467
    [16] LI J C, LIN H A, LUO J X, et al. Optical design of space gravitational wave detection telescope[J]. Chinese Optics, 2022, 15(4): 761-769. (in Chinese). doi: 10.37188/CO.2022-0018
    [17] SCHUSTER S, TRÖBS M, WANNER G, et al. Experimental demonstration of reduced tilt-to-length coupling by a two-lens imaging system[J]. Optics Express, 2016, 24(10): 10466-10475. doi: 10.1364/OE.24.010466
    [18] WEAVER A J. Investigating limits on gravitational wave detection by laser interferometry using hermite-gauss mode representations of paraxial light propagation[D]. Gainesville: University of Florida, 2021.
    [19] PACZKOWSKI S, GIUSTERI R, HEWITSON M, et al. Postprocessing subtraction of tilt-to-length noise in LISA[J]. Physical Review D, 2022, 106(4): 042005. doi: 10.1103/PhysRevD.106.042005
    [20] HOUBA N, DELCHAMBRE S, ZIEGLER T, et al. Optimal estimation of tilt-to-length noise for spaceborne gravitational-wave observatories[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(6): 1078-1092. doi: 10.2514/1.G006064
    [21] GEORGE D, SANJUAN J, FULDA P, et al. Calculating the precision of tilt-to-length coupling estimation and noise subtraction in LISA using Fisher information[J]. Physical Review D, 2023, 107(2): 022005. doi: 10.1103/PhysRevD.107.022005
    [22] ZHAO M Y, PENG X D, YANG ZH, et al. Preliminary simulation of intersatellite laser interference link for the Taiji program[J]. Journal of Astronomical Telescopes, 2022, 8(3): 038002.
    [23] SOBOL’ I M. On sensitivity estimation for nonlinear mathematical models[J]. Matematicheskoe Modelirovanie, 1990, 2(1): 112-118.
    [24] HOMMA T, SALTELLI A. Importance measures in global sensitivity analysis of nonlinear models[J]. Reliability Engineering & System Safety, 1996, 52(1): 1-17.
    [25] SOBOL’ I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1-3): 271-280. doi: 10.1016/S0378-4754(00)00270-6
    [26] SALTELLI A, ANNONI P, AZZINI I, et al. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[J]. Computer Physics Communications, 2010, 181(2): 259-270. doi: 10.1016/j.cpc.2009.09.018
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  23
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-26
  • 录用日期:  2024-12-10
  • 网络出版日期:  2025-01-22

目录

    /

    返回文章
    返回