留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rapid simulation and phase distortion evaluation of thermal blooming effect in internal laser propagation channels

WU Dong-yu LI Xiang LI Jia-sheng GAO Liang SONG Yan-song WANG Si DONG Ke-yan

吴东宇, 李响, 李家晟, 高亮, 宋延嵩, 王思, 董科研. 激光内通道热晕效应的快速模拟与相位畸变评估[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2024-0022
引用本文: 吴东宇, 李响, 李家晟, 高亮, 宋延嵩, 王思, 董科研. 激光内通道热晕效应的快速模拟与相位畸变评估[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2024-0022
WU Dong-yu, LI Xiang, LI Jia-sheng, GAO Liang, SONG Yan-song, WANG Si, DONG Ke-yan. Rapid simulation and phase distortion evaluation of thermal blooming effect in internal laser propagation channels[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0022
Citation: WU Dong-yu, LI Xiang, LI Jia-sheng, GAO Liang, SONG Yan-song, WANG Si, DONG Ke-yan. Rapid simulation and phase distortion evaluation of thermal blooming effect in internal laser propagation channels[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0022

激光内通道热晕效应的快速模拟与相位畸变评估

详细信息
  • 中图分类号: TH741;

Rapid simulation and phase distortion evaluation of thermal blooming effect in internal laser propagation channels

doi: 10.37188/CO.EN-2024-0022
Funds: Supported by Science and Technology Development Plan Project of Jilin Province, China (No. 20230301002GX); Science and Technology Development Plan Project of Jilin Province, China (No. 20230301001GX);
More Information
    Author Bio:

    WU Dong-yu (1999—), male, born in Shuangyashan, Heilongjiang Province, master candidate. He received his bachelor's degree from Anhui Polytechnic University in 2022. His research mainly focuses on the environmental adaptability analysis of optical precision instruments. E-mail: wudongyu1111@163.com

    LI Xiang (1986—), male, born in Changchun, Jilin Province. Ph.D, associate researcher, and master supervisor. He received his Ph.D. from the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences in 2015. His research mainly focuses on laser propagation, optical system structure optimization design, analysis, and environmental adaptability research. E-mail: abelfeel@163.com

    Corresponding author: abelfeel@163.com
  • 摘要:

    高功率激光在内通道传播过程中,光束会在导光路径中加热传播介质产生热晕现象,影响高能激光设备出光口处光束质量;由于内通道中光路排布复杂,因此对导光路径上热晕影响的评估往往需要复杂的工作和较长的时间。为适应工程中对导光路径热晕效应快速评估的需要,本文提出一种基于有限元法的内光路热晕效应快速模拟方法。该方法对流体区域进行微元划分,利用有限元分析方法进行流场分析;对复杂内通道的流场区域建立简化分析模型,在简化模型中划分等晕区域;根据各等晕区域内光程差计算结果,完成热晕效应导致的相位畸变的数值模拟计算。将计算结果与现有方法计算结果对比,结果显示:对于复杂光路,该方法计算结果与现有方法计算结果偏差小于3.6%,相位畸变形式相近;对于L型单元,该方法计算结果与现有方法计算结果得到的主要像差影响因素和变化规律相同。利用该方法完成对直管道不同重力作用方向下的热晕影响分析,结果显示,相位畸变随重力方向变化而变化,相位变化的大小与重力在垂直于光轴方向的分量大小有很强的相关性。该方法相较于现有方法灵活性高、无需进行复杂自编分析程序调试。该方法的分析结果在工程设计阶段能够快速评估内通道导光路径中热晕效应,为确定热晕抑制方法提供重要参考。

     

  • Figure 1.  Schematic diagram of point positions within the L-type light-passing region

    Figure 2.  Schematic diagram of optical path equivalence

    Figure 3.  Schematic diagram of computational unit division

    Figure 4.  Analysis model of light propagation channel: (a) Simplified model of light propagation channel; (b) Optical path model

    Figure 5.  Energy distribution diagram of the beam used in the study

    Figure 6.  Meshing model of the fluid region

    Figure 7.  Temperature distribution after 3 seconds of light propagation

    Figure 8.  Density equivalent model calculation process diagram: (a) Initial density distribution; (b) Density distribution after 3 seconds of light propagation;(c) Density nodes of the original model; (d) Density nodes of the equivalent mode

    Figure 9.  Calculation time and results with different numbers of unidirectional micro-elements

    Figure 10.  Computed beam phase difference distribution

    Figure 11.  Beam wavefront aberration:(a)Wavefront aberration calculated by the model;(b)Wavefront aberration calculated by the self-developed program

    Figure 12.  Comparison of Zernike polynomials

    Figure 13.  L-type region schematic

    Figure 14.  Temperature distribution after 5 seconds

    Figure 15.  Zernike coefficients from the 3rd to the 15th terms

    Figure 16.  Variation of the main Zernike terms

    Figure 17.  Defocus and spherical aberration changes over 5 seconds:(a)Defocus;(b)spherical aberration

    Figure 18.  Gravitational force direction diagram

    Figure 19.  Phase variation distribution under different $ \theta $

    Figure 20.  Relationship between gravity component and phase difference

    Table  1.   Medium Parameters

    Parameter TypeParameter Value
    Density/(kg/m31.17
    Specific Heat at Constant Pressure/ (J/kg·K)1006
    Specific Heat at Constant Volume/ (J/kg·K)718
    Viscosity/(10−5Pa·s)1.81
    Thermal Conductivity/(W/(m·K)0.0257
    下载: 导出CSV

    Table  2.   Physical Properties of Helium

    Parameter TypeParameter Value
    Density/(kg/m31.138
    Specific Heat at Constant Pressure/ (J/kg·K)1040.67
    Viscosity/(10−5Pa·s)1.66
    Thermal Conductivity/(W/(m·K)0.0242
    下载: 导出CSV
  • [1] REN G G, HUANG Y N. The present status and future of the tactical laser weapons[J]. Laser & Infrared, 2002, 32(4): 211-217. (in Chinese). doi: 10.3969/j.issn.1001-5078.2002.04.001
    [2] WANG R F, ZHANG Y P, XU ZH Y. Present situation and developing trend of application of laser technique to military[J]. Infrared and Laser Engineering, 2007, 36(S): 308-311. (in Chinese).
    [3] REN G G. Current situation and development trend of high energy laser weapon[J]. Laser & Optoelectronics Progress, 2008, 45(9): 62-69. (in Chinese).
    [4] YZHANG Y Q, JI X L, LI X Q, et al. Thermal blooming effect of laser beams propagating through seawater[J]. Optics Express, 2017, 25(6): 5861-5875. doi: 10.1364/OE.25.005861
    [5] ZHANG J H, SHI CH P. Experimental research on thermal blooming effects of high energy laser internal optical transmission[J]. Electro-Optic Technology Application, 2020, 35(3): 45-49. (in Chinese). doi: 10.3969/j.issn.1673-1255.2020.03.010
    [6] JIN G, LIU SH F, LI SH M, et al. Laser thermal effects in beam control system on the emitted laser quality[J]. Chinese Journal of Lasers, 2002, 29(10): 895-899. (in Chinese). doi: 10.3321/j.issn:0258-7025.2002.10.009
    [7] XWU X Y ZH, XU J, GONG K L, et al. Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases[J]. Chinese Physics B, 2022, 31(8): 086105. doi: 10.1088/1674-1056/ac6165
    [8] MCCLELLAN C, MUNN M W, NORRIS H, et al. Optical effects of gas flow through an optical train: an experimental determination[J]. Applied Optics, 1979, 18(23): 3984-3989. doi: 10.1364/AO.18.003984
    [9] ALBERTINE J R, SIAHATGAR S, BENNETT H E. High-power beam control: results-to-date and relevance to power beaming[J]. Proceedings of SPIE, 1997, 2988: 257-263. doi: 10.1117/12.274389
    [10] JOHNSON B. Thermal-blooming laboratory experiments[J]. The Lincoln Laboratory Journal, 1992, 5(1): 151-170.
    [11] 孙运强. 激光内通道传输的气体热效应研究[D]. 长沙: 国防科学技术大学, 2011: 42-43.

    SUN Y Q. Study on the thermal blooming of beam propagation in the inner channel[D]. Changsha: National University of Defense Technology, 2011: 42-43. (in Chinese).
    [12] 朱福音. 激光内通道热效应研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2017: 6-16.

    ZHU F Y. Research on the Thermal blooming of Laser Propagation in the Inner Channel[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optics and Electronics Chinese Academy of Sciences), 2017: 6-16. (in Chinese).
    [13] HU P, ZHANG J ZH, ZHANG F ZH. Modeling and analysis of inner thermal effects in high energy laser system[J]. High Power Laser and Particle Beams, 2022, 34(1): 011008. (in Chinese).
    [14] RZHOU R, CUI D, LIU X T, et al. Influence of convective heat transfer on thermal blooming effect in high-power laser emission systems[J]. International Journal of Heat and Mass Transfer, 2024, 230: 125777. doi: 10.1016/j.ijheatmasstransfer.2024.125777
    [15] LLU L, WANG ZH Q, ZHANG P F, et al. Thermal blooming induced phase change and its compensation of a Gaussian beam propagation in an absorbing medium[J]. Optics Letters, 2021, 46(17): 4304-4307. doi: 10.1364/OL.437851
    [16] FERZIGER J H, PERIC M. Computational Methods for Fluid Dynamics[M]. Berlin: Springer, 1996.
    [17] 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001: 240-245.

    TAO W Q. Numerical Heat Transfer[M]. 2nd ed. Xi’an: Xi'an Jiaotong University Press, 2001: 240-245. (in Chinese).
    [18] FZHU F Y, WANG J H, REN G, et al. Thermal blooming on laser propagation in an aspirating pipe[J]. Proceedings of SPIE, 2016, 9682: 96820T.
    [19] ZHANG Q, HU Q L, WANG H Y, et al. Analysis of applicable scope of numerical simulation method for thermal blooming of high-energy laser[J]. Chinese Journal of Lasers, 2024, 51(8): 0805003. (in Chinese). doi: 10.3788/CJL230991
    [20] G BÖNSCH G, POTULSKI E. Measurement of the refractive index of air and comparison with modified Edlén's formulae[J]. Metrologia, 1998, 35(2): 133-139. doi: 10.1088/0026-1394/35/2/8
    [21] NIU K, TIAN C. Zernike polynomials and their applications[J]. Journal of Optics, 2022, 24(12): 123001. doi: 10.1088/2040-8986/ac9e08
    [22] HUO H W, JIN Q, LIU Y, et al. Design and alignment analysis of off-axis reflective optical system[J]. Laser & Infrared, 2017, 47(3): 363-366. (in Chinese). doi: 10.3969/j.issn.1001-5078.2017.03.021
    [23] KDOYLE K B, GENBERG V L, MICHELS G J. Integrated Optomechanical Analysis[M]. 2nd ed. Bellingham: SPIE, 2012: 56.
    [24] LAN SH, LI X N, XU CH. Influence of gas thermal effect on beam combination system[J]. Chinese Optics, 2018, 11(1): 108-114. (in Chinese). doi: 10.3788/co.20181101.0108
    [25] LIU W SH, YUAN ZH J, WANG H B, et al. Thermal blooming effect of array beams under buoyancy convection in closed channel[J]. Acta Optica Sinica, 2022, 42(1): 0114001. (in Chinese). doi: 10.3788/AOS202242.0114001
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  18
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-24
  • 录用日期:  2024-11-14
  • 网络出版日期:  2025-01-08

目录

    /

    返回文章
    返回