Rapid simulation and phase distortion evaluation of thermal blooming effect in internal laser propagation channels
doi: 10.37188/CO.EN-2024-0022
-
摘要:
高功率激光在内通道传播过程中,光束会在导光路径中加热传播介质产生热晕现象,影响高能激光设备出光口处光束质量;由于内通道中光路排布复杂,因此对导光路径上热晕影响的评估往往需要复杂的工作和较长的时间。为适应工程中对导光路径热晕效应快速评估的需要,本文提出一种基于有限元法的内光路热晕效应快速模拟方法。该方法对流体区域进行微元划分,利用有限元分析方法进行流场分析;对复杂内通道的流场区域建立简化分析模型,在简化模型中划分等晕区域;根据各等晕区域内光程差计算结果,完成热晕效应导致的相位畸变的数值模拟计算。将计算结果与现有方法计算结果对比,结果显示:对于复杂光路,该方法计算结果与现有方法计算结果偏差小于3.6%,相位畸变形式相近;对于L型单元,该方法计算结果与现有方法计算结果得到的主要像差影响因素和变化规律相同。利用该方法完成对直管道不同重力作用方向下的热晕影响分析,结果显示,相位畸变随重力方向变化而变化,相位变化的大小与重力在垂直于光轴方向的分量大小有很强的相关性。该方法相较于现有方法灵活性高、无需进行复杂自编分析程序调试。该方法的分析结果在工程设计阶段能够快速评估内通道导光路径中热晕效应,为确定热晕抑制方法提供重要参考。
Abstract:During the propagation of high-power lasers within internal channels, the laser beam heats the propagation medium, causing the thermal blooming effect that degrades the beam quality at the output. The intricate configuration of the optical path within the internal channel necessitates complex and time-consuming efforts to assess the impact of thermal blooming effect on the optical path. To meet the engineering need for rapid evaluation of thermal blooming effect in optical paths, this study proposes a rapid simulation method for the thermal blooming effect in internal optical paths based on the finite element method. This method discretizes the fluid region into infinitesimal elements and employs finite element analysis for flow field analysis. A simplified analytical model of the flow field region in complex internal channels is established, and regions with similar thermal blooming effect are divided within this model.Based on the calculated optical path differences within these regions, numerical simulations of phase distortion caused by thermal blooming were conducted.The calculated result were compared with those obtained using existing methods. The findings reveal that for complex optical paths, the discrepancy between the two approaches is less than 3.6%, with similar phase distortion patterns observed. For L-type units,this method and existing methods identify the same primary factors influencing aberrations and exhibited consistent trends in their variation.This method was used to analyze the impact of thermal blooming effect in a straight channel under different gravity directions. The results show that phase distortion varies with changes in the direction of gravity, and the magnitude of the phase difference is strongly correlated with the component of gravity perpendicular to the optical axis. Compared to existing methods, this approach offers greater flexibility, obviates the need for complex custom analysis programming.The analytical results of this method enable a rapid assessment of the thermal blooming effect in optical paths within the internal channel. This is especially useful during the engineering design phase. These results also provide crucial references for developing strategies to suppress thermal blooming effect.
-
Table 1. Medium Parameters
Parameter Type Parameter Value Density/(kg/m3) 1.17 Specific Heat at Constant Pressure/ (J/kg·K) 1006 Specific Heat at Constant Volume/ (J/kg·K) 718 Viscosity/(10−5Pa·s) 1.81 Thermal Conductivity/(W/(m·K) 0.0257 Table 2. Physical Properties of Helium
Parameter Type Parameter Value Density/(kg/m3) 1.138 Specific Heat at Constant Pressure/ (J/kg·K) 1040.67 Viscosity/(10−5Pa·s) 1.66 Thermal Conductivity/(W/(m·K) 0.0242 -
[1] REN G G, HUANG Y N. The present status and future of the tactical laser weapons[J]. Laser & Infrared, 2002, 32(4): 211-217. (in Chinese). doi: 10.3969/j.issn.1001-5078.2002.04.001 [2] WANG R F, ZHANG Y P, XU ZH Y. Present situation and developing trend of application of laser technique to military[J]. Infrared and Laser Engineering, 2007, 36(S): 308-311. (in Chinese). [3] REN G G. Current situation and development trend of high energy laser weapon[J]. Laser & Optoelectronics Progress, 2008, 45(9): 62-69. (in Chinese). [4] YZHANG Y Q, JI X L, LI X Q, et al. Thermal blooming effect of laser beams propagating through seawater[J]. Optics Express, 2017, 25(6): 5861-5875. doi: 10.1364/OE.25.005861 [5] ZHANG J H, SHI CH P. Experimental research on thermal blooming effects of high energy laser internal optical transmission[J]. Electro-Optic Technology Application, 2020, 35(3): 45-49. (in Chinese). doi: 10.3969/j.issn.1673-1255.2020.03.010 [6] JIN G, LIU SH F, LI SH M, et al. Laser thermal effects in beam control system on the emitted laser quality[J]. Chinese Journal of Lasers, 2002, 29(10): 895-899. (in Chinese). doi: 10.3321/j.issn:0258-7025.2002.10.009 [7] XWU X Y ZH, XU J, GONG K L, et al. Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases[J]. Chinese Physics B, 2022, 31(8): 086105. doi: 10.1088/1674-1056/ac6165 [8] MCCLELLAN C, MUNN M W, NORRIS H, et al. Optical effects of gas flow through an optical train: an experimental determination[J]. Applied Optics, 1979, 18(23): 3984-3989. doi: 10.1364/AO.18.003984 [9] ALBERTINE J R, SIAHATGAR S, BENNETT H E. High-power beam control: results-to-date and relevance to power beaming[J]. Proceedings of SPIE, 1997, 2988: 257-263. doi: 10.1117/12.274389 [10] JOHNSON B. Thermal-blooming laboratory experiments[J]. The Lincoln Laboratory Journal, 1992, 5(1): 151-170. [11] 孙运强. 激光内通道传输的气体热效应研究[D]. 长沙: 国防科学技术大学, 2011: 42-43.SUN Y Q. Study on the thermal blooming of beam propagation in the inner channel[D]. Changsha: National University of Defense Technology, 2011: 42-43. (in Chinese). [12] 朱福音. 激光内通道热效应研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2017: 6-16.ZHU F Y. Research on the Thermal blooming of Laser Propagation in the Inner Channel[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optics and Electronics Chinese Academy of Sciences), 2017: 6-16. (in Chinese). [13] HU P, ZHANG J ZH, ZHANG F ZH. Modeling and analysis of inner thermal effects in high energy laser system[J]. High Power Laser and Particle Beams, 2022, 34(1): 011008. (in Chinese). [14] RZHOU R, CUI D, LIU X T, et al. Influence of convective heat transfer on thermal blooming effect in high-power laser emission systems[J]. International Journal of Heat and Mass Transfer, 2024, 230: 125777. doi: 10.1016/j.ijheatmasstransfer.2024.125777 [15] LLU L, WANG ZH Q, ZHANG P F, et al. Thermal blooming induced phase change and its compensation of a Gaussian beam propagation in an absorbing medium[J]. Optics Letters, 2021, 46(17): 4304-4307. doi: 10.1364/OL.437851 [16] FERZIGER J H, PERIC M. Computational Methods for Fluid Dynamics[M]. Berlin: Springer, 1996. [17] 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001: 240-245.TAO W Q. Numerical Heat Transfer[M]. 2nd ed. Xi’an: Xi'an Jiaotong University Press, 2001: 240-245. (in Chinese). [18] FZHU F Y, WANG J H, REN G, et al. Thermal blooming on laser propagation in an aspirating pipe[J]. Proceedings of SPIE, 2016, 9682: 96820T. [19] ZHANG Q, HU Q L, WANG H Y, et al. Analysis of applicable scope of numerical simulation method for thermal blooming of high-energy laser[J]. Chinese Journal of Lasers, 2024, 51(8): 0805003. (in Chinese). doi: 10.3788/CJL230991 [20] G BÖNSCH G, POTULSKI E. Measurement of the refractive index of air and comparison with modified Edlén's formulae[J]. Metrologia, 1998, 35(2): 133-139. doi: 10.1088/0026-1394/35/2/8 [21] NIU K, TIAN C. Zernike polynomials and their applications[J]. Journal of Optics, 2022, 24(12): 123001. doi: 10.1088/2040-8986/ac9e08 [22] HUO H W, JIN Q, LIU Y, et al. Design and alignment analysis of off-axis reflective optical system[J]. Laser & Infrared, 2017, 47(3): 363-366. (in Chinese). doi: 10.3969/j.issn.1001-5078.2017.03.021 [23] KDOYLE K B, GENBERG V L, MICHELS G J. Integrated Optomechanical Analysis[M]. 2nd ed. Bellingham: SPIE, 2012: 56. [24] LAN SH, LI X N, XU CH. Influence of gas thermal effect on beam combination system[J]. Chinese Optics, 2018, 11(1): 108-114. (in Chinese). doi: 10.3788/co.20181101.0108 [25] LIU W SH, YUAN ZH J, WANG H B, et al. Thermal blooming effect of array beams under buoyancy convection in closed channel[J]. Acta Optica Sinica, 2022, 42(1): 0114001. (in Chinese). doi: 10.3788/AOS202242.0114001 -