留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Adjusting the compactness and hydrophobicity of color filters to decrease gas release during TFT-LCD fabrication

LI Ji ZHANG Xia FENG Yi LIAO Chang ZHANG Jie YIN Yong-ming MENG Hong

李吉, 张霞, 冯翊, 廖昌, 张杰, 尹勇明, 孟鸿. 调整彩色滤光膜的致密性和疏水性以减少TFT-LCD制造中的气体释放[J]. 中国光学(中英文), 2024, 17(3): 704-713. doi: 10.37188/CO.EN-2023-0029
引用本文: 李吉, 张霞, 冯翊, 廖昌, 张杰, 尹勇明, 孟鸿. 调整彩色滤光膜的致密性和疏水性以减少TFT-LCD制造中的气体释放[J]. 中国光学(中英文), 2024, 17(3): 704-713. doi: 10.37188/CO.EN-2023-0029
LI Ji, ZHANG Xia, FENG Yi, LIAO Chang, ZHANG Jie, YIN Yong-ming, MENG Hong. Adjusting the compactness and hydrophobicity of color filters to decrease gas release during TFT-LCD fabrication[J]. Chinese Optics, 2024, 17(3): 704-713. doi: 10.37188/CO.EN-2023-0029
Citation: LI Ji, ZHANG Xia, FENG Yi, LIAO Chang, ZHANG Jie, YIN Yong-ming, MENG Hong. Adjusting the compactness and hydrophobicity of color filters to decrease gas release during TFT-LCD fabrication[J]. Chinese Optics, 2024, 17(3): 704-713. doi: 10.37188/CO.EN-2023-0029

调整彩色滤光膜的致密性和疏水性以减少TFT-LCD制造中的气体释放

详细信息
  • 中图分类号: TP394.1;TH691.9

Adjusting the compactness and hydrophobicity of color filters to decrease gas release during TFT-LCD fabrication

doi: 10.37188/CO.EN-2023-0029
Funds: Supported by National Natural Science Foundation of China (No. 62205058); Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515110085); Shenzhen Fundamental Research Program (No. JSGG20220831103402005)
More Information
    Author Bio:

    LI Ji (1988—), male, born in Huanggang, Hubei province. In 2013, he received his master's degree from South China University of Technology. Currently, he is a PhD candidate at Peking University. He is mainly engaged in research and development of display materials. E-mail: liji02@stu.pku.edu.cn

    YIN Yong-ming (1989—), male, born in Chenzhou, Hunan province. He obtained his degrees for Bachelor and Master from Jilin University, and then undertook his Ph.D. studies at Peking University from 2016 to 2020. Currently, he serves as an associate professor at Shenzhen MSU-BIT University. His research interests are in optoelectronics materials and devices for display applications. E-mail: yinyongming@smbu.edu.cn

    MENG Hong (1966—), male, born in Huayin city, Shanxi province. Chair Professor, School of Advanced Materials, Shenzhen Graduate School, Peking University. He received his Ph. D. from the University of California, Los Angeles in 2002. His research interests are in organic optoelectronics materials and devices. E-mail: menghong@pku.edu.cn

    Corresponding author: yinyongming@smbu.edu.cnmenghong@pku.edu.cn
  • 摘要:

    TFT-LCD产业正朝着高效率、低成本的方向发展。在TFT-LCD制造过程中,发现不同的光刻胶需要不同的真空干燥时间。为了减少制造时间,提高面板成品率,有必要明确影响真空时间的因素。本文探讨了抽运时间与光刻胶材料性能的关系。发现光刻胶的热稳定性与抽运时间的关系可以忽略不计。光刻胶的致密性和疏水性与真空干燥时间密切相关。致密性和高疏水性可以有效避免水蒸气在制造过程中侵入和储存在光刻胶中,减少泵送次数。总的来说,这项工作可以为未来TFT-LCD工业新型光刻胶的开发提供一定的参考。

     

  • Figure 1.  Molecular structures of different monomers: G6-AG-001, G6-AG-002, DPEA-12 and DPCA-60.

    Figure 2.  Three possible causes affecting the gas release from CFs. (a) Outgas from CFs; (b) low compactness and (c) low hydrophobicity of CFs

    Figure 3.  Thermogravimetric analysis of PT-1 and PT-2. The samples were baked at 230 °C for 50 min, 210 °C for 60 min and 230 °C for 60 min, sequentially

    Figure 4.  (a) The molecular structures of P1 and P2. (b) The schematic illustration of the porous structures. The red bars represent the crosslinking and the dotted circles represent the voids. P1 has large voids and P2 is more compact. (c) SEM images of sample A and sample B. (d) Pumping time of the two samples

    Figure 5.  (a) Hydrophilic group and hydrophobic group in M2 and M3. (b) Contact angles of three samples, Sample E being the most hydrophobic. (c) Pumping time of three samples. (d) TGA curves of three pretreated samples by high temperature and humidity

    Figure 6.  Optical morphology of Sample F

    Figure 7.  Color image of fruits displayed on a TFT-LCD prototype using sample F as a green CF

    Table  1.   Compositions of CFs

    Compositions Sample
    PT-1 PT-2 A B C D E F
    Color Paste G58+Y138
    Polymer
    (wt%)
    P1 P1 P1 50% P1
    50% P2
    P1 P1 P1 50% P1
    50% P2
    Monomers G6-AG-001
    DPCA-60
    G6-AG-001 G6-AG-001
    DPEA-12
    G6-AG-001
    DPEA-12
    G6-AG-001 G6-AG-001
    G6-AG-002
    G6-AG-001
    DPCA-60
    G6-AG-001
    DPCA-60
    Polymer/Monomer (wt%) 40%/60% 40%/60% 35%/65% 35%/65% 35%/65% 35%/65% 35%/65% 35%/65%
    Photoinitiator (wt%) 0.15%
    Additive (wt%) 0.15%
    Solvent PGMEA+MBA
    下载: 导出CSV

    Table  2.   Pumping time of vacuum drying and mass loss

    Items CF
    PT-1 PT-2
    Pumping time/s 62.3 65.8
    Mass loss (40−215 min) 2.46% 1.50%
    Mass loss (0−30 min) 0.20% 0.85%
    下载: 导出CSV

    Table  3.   The thickness and shrinkage of the photoresist layer before and after UV exposure

    Sample Items
    d1/μm d2/μm Shrinkage (%) Pumping time/s
    Sample A 2.04 2.04 0.37 7
    Sample B 2.17 2.15 0.76 5.5
    下载: 导出CSV

    Table  4.   Data of the three samples CE

    Sample Monomer Proportion Contact angle/(°) Developing time/s Property Mass loss Pumping time/s
    C M1 100% 49.4 24 / 9.7% 7
    D M1+M2 70%+30% 48.6 21 More hydrophilic 23.4% 7.5
    E M1+M3 70%+30% 51.3 29 More hydrophobic 3.5% 3
    下载: 导出CSV

    Table  5.   Optical and VCD characteristics of reference CF and sample F

    Item Reference CF Sample F
    Rx 0.642 0.642
    Ry 0.337 0.337
    Gx 0.301 0.301
    Gy 0.607 0.607
    Bx 0.150 0.149
    By 0.07 0.068
    Wx 0.276 0.278
    Wy 0.297 0.301
    Tr% 5.85% 5.89%
    NTSC 70.8% 71%
    Pumping time/s 62.3 62
    下载: 导出CSV
  • [1] CHEN K S, WANG C H, CHEN H T. A MAIC approach to TFT-LCD panel quality improvement[J]. Microelectronics Reliability, 2006, 46(7): 1189-1198. doi: 10.1016/j.microrel.2005.10.003
    [2] HUANG C Y, LU H H. Evaluating key factors for selecting capital equipment suppliers a study of small and medium-sized TFT-LCD manufacturers[C]. Proceedings of 2016 International Conference on Applied System Innovation, IEEE, 2016: 1-3.
    [3] JANG Y J, CHOI G H. Introduction to automated material handling systems in LCD panel production lines[C]. Proceedings of 2006 IEEE International Conference on Automation Science and Engineering, IEEE, 2006: 223-229.
    [4] TSUDA K. Colour filters for LCDs[J]. Displays, 1993, 14(2): 115-124. doi: 10.1016/0141-9382(93)90078-J
    [5] CHAE K H, SUNG K H. A polymeric photobase generator containing oxime–urethane groups: crosslinking reaction and application to negative photoresist[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2004, 42(4): 975-984. doi: 10.1002/pola.11032
    [6] KIM D G, KWON S J, HONG S K, et al. ArF photoresist polymers with nitrogen or sulfone moieties for negative tone development process[J]. Proceedings of SPIE, 2014, 9051: 905126.
    [7] SUGITA H, KANAI D, MASHIMA H, et al. Poly(vinyl alcohol)-based photosensitive water-borne coating for low-temperature color-filter production[J]. Displays, 2021, 69: 102057. doi: 10.1016/j.displa.2021.102057
    [8] SUGITA H, EBATA S, SUZUKI H, et al. Polyvinyl-alcohol-based color resist for low-temperature color-filter production[J]. Displays, 2023, 77: 102393. doi: 10.1016/j.displa.2023.102393
    [9] SABNIS R W. Color filter technology for liquid crystal displays[J]. Displays, 1999, 20(3): 119-129. doi: 10.1016/S0141-9382(99)00013-X
    [10] JANG S H, LEE G, LEE S Y, et al. Synthesis and characterisation of triphenylmethine dyes for colour conversion layer of the virtual and augmented reality display[J]. Dyes and Pigments, 2022, 204: 110419. doi: 10.1016/j.dyepig.2022.110419
    [11] KWAK M, KIM Y, HAN S, et al. Past, present, and future of WCG technology in display[J]. Journal of the Society for Information Display, 2019, 27(11): 691-699. doi: 10.1002/jsid.843
    [12] XIE D N, QI Y L, ZHANG B, et al. Ultra-high color gamut system achieved by quantum dot photoresist and color filter system[J]. Ferroelectrics, 2018, 528(1): 66-74. doi: 10.1080/00150193.2018.1448627
    [13] ZHAN H M, XU ZH, TIAN CH, et al. Achieving standard wide color gamut by tuning LED backlight and color filter spectrum in LCD[J]. Journal of the Society for Information Display, 2014, 22(11): 545-551. doi: 10.1002/jsid.274
    [14] ZHENG W W, KANG C T. Ite/Sid. The study on relation between color gamut and luminous efficiency basic on the shift of color filter and LED spectrum[C]. Proceedings of the 19th International Display Workshops / Asia Display 2012, IDW-International Display Workshops, 2012: 515-517.
    [15] TATSUMI Y, INOUE M. 40-4: Development of color resists containing novel dyes for liquid crystal displays[J]. SID Symposium Digest of Technical Papers, 2016, 47(1): 521-523. doi: 10.1002/sdtp.10728
    [16] YOON C, CHOI J H. Synthesis of tricyanopyrrolidone derivatives as synergists for improving contrast ratio of liquid crystal displays[J]. Dyes and Pigments, 2014, 101: 344-350. doi: 10.1016/j.dyepig.2013.10.017
    [17] JHUN C G, GWAG J S. Size effect of light scattering on the nano-sized color filter pigment in liquid crystal display[J]. Journal of the Optical Society of Korea, 2014, 18(2): 184-187. doi: 10.3807/JOSK.2014.18.2.184
    [18] UTSUMI Y, HIYAMA I, TOMIOKA Y, et al. Analysis of light leakage caused by color filter between crossed polarizers[J]. Japanese Journal of Applied Physics, 2007, 46(3R): 1047-1050. doi: 10.1143/JJAP.46.1047
    [19] UTSUMI Y, HIYAMA I, TOMIOKA Y, et al. Quantitative analysis method for measuring light leakage intensity of three primary color filters placed between crossed polarizers[J]. Japanese Journal of Applied Physics, 2008, 47(5): 3518-3521.
    [20] NEǏMAN M B, KOVARSKAYA B M, GOLUBENKOVA L I, et al. The thermal degradation of some epoxy resins[J]. Journal of Polymer Science, 1962, 56(164): 383-389. doi: 10.1002/pol.1962.1205616408
    [21] VENGER A E, FRAITNAN Y E. Thermogravimetric analysis of the kinetics of thermal decomposition processes in polymer materials[J]. Journal of Engineering Physics, 1981, 40(2): 168-174. doi: 10.1007/BF00826026
    [22] ISMAIL A F, MANSOURIZADEH A. A comparative study on the structure and performance of porous polyvinylidene fluoride and polysulfone hollow fiber membranes for CO2 absorption[J]. Journal of Membrane Science, 2010, 365(1-2): 319-328. doi: 10.1016/j.memsci.2010.09.021
    [23] AVILA J, ČERVINKA C, DUGAS P Y, et al. Porous ionic liquids: structure, stability, and gas absorption mechanisms[J]. Advanced Materials Interfaces, 2021, 8(9): 2001982. doi: 10.1002/admi.202001982
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  254
  • HTML全文浏览量:  164
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-15
  • 修回日期:  2023-12-04
  • 录用日期:  2023-12-14
  • 网络出版日期:  2024-01-31

目录

    /

    返回文章
    返回