留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic field sensor utilizing U-Shaped Cavity based on in-fiber Mach–Zehnder interferometer

FAN Peng-cheng JIANG Xue-zhai Tian De-qiang Zhang Guang-qiang

范鹏程, 蒋学寨, 田德强, 张光强. 基于光纤U形腔的马赫-曾德尔干涉仪的磁场传感器[J]. 中国光学(中英文), 2024, 17(3): 674-682. doi: 10.37188/CO.EN-2023-0015
引用本文: 范鹏程, 蒋学寨, 田德强, 张光强. 基于光纤U形腔的马赫-曾德尔干涉仪的磁场传感器[J]. 中国光学(中英文), 2024, 17(3): 674-682. doi: 10.37188/CO.EN-2023-0015
FAN Peng-cheng, JIANG Xue-zhai, Tian De-qiang, Zhang Guang-qiang. Magnetic field sensor utilizing U-Shaped Cavity based on in-fiber Mach–Zehnder interferometer[J]. Chinese Optics, 2024, 17(3): 674-682. doi: 10.37188/CO.EN-2023-0015
Citation: FAN Peng-cheng, JIANG Xue-zhai, Tian De-qiang, Zhang Guang-qiang. Magnetic field sensor utilizing U-Shaped Cavity based on in-fiber Mach–Zehnder interferometer[J]. Chinese Optics, 2024, 17(3): 674-682. doi: 10.37188/CO.EN-2023-0015

基于光纤U形腔的马赫-曾德尔干涉仪的磁场传感器

详细信息
  • 中图分类号: TN253

Magnetic field sensor utilizing U-Shaped Cavity based on in-fiber Mach–Zehnder interferometer

doi: 10.37188/CO.EN-2023-0015
Funds: Supported by the Crrc Zhuzhou Institute Co., Ltd.
More Information
    Author Bio:

    FAN Peng-cheng (1992—), male, born in Hengyang, Hunan, Master degree, obtained his bachelor degree and master degree in Hunan University of Science and Engineering and Jinan University in 2014 and 2017, respectively.The main research directions are fiber optic sensing technology, LCD display, OLED display, and human-computer interaction technology. E-mail: fpc19920528@126.com or fanpc@crszic.com

    Corresponding author: fpc19920528@126.com, fanpc@csrzic.com
  • 摘要:

    本文研制了一种光纤磁场传感器,使用涂有磁流体(MF)的全光纤马赫-曾德尔干涉仪(MZI)的U形腔体进行实验验证。光纤磁场传感器是在两段单模光纤(SMF)之间拼接一段单模光纤形成U型光学腔制造而成的,该设计具有光纤几何关系。由于几何对称性MZI对周围折射率(RI)具有很强的敏感性,灵敏度高达−13588 nm/RIU,且磁流体的折射率对磁场敏感,因此所提结构实现了磁场传感功能。实验结果表明,该传感器磁场灵敏度高达137 pm/Oe,磁场范围从0~250 Oe几乎呈线性。本文所设计的光纤磁场传感器具有体积小、成本低、易于制造、坚固耐用、灵敏度高、重复性好、易于与光纤系统集成等相关优势。

     

  • Figure 1.  (a) Side view micrograph of the left and right splicing points of the in-line MZI; (b) confronted view micrograph of the MZI in air

    Figure 2.  Transmission spectra of the interference in air and water

    Figure 3.  (a) Interference spectra at different RI values and (b) spectral RI response of the proposed RI sensor

    Figure 4.  Schematic diagram of the magnetic field sensor. Inset is the cross-sectional view of the U-shaped cavity, combined with an MF sealed into a capillary

    Figure 5.  (a) Variation of a dip spectrum with the applied magnetic field. (b) Loss peak a, b, c, d wavelength as a function of the magnetic field strength. (c) (d) Loss peak a wavelength shift as a function of magnetic field strength

  • [1] HORNG H E, CHIEH J J, CHAO Y H, et al. Designing optical-fiber modulators by using magnetic fluids[J]. Optics Letters, 2005, 30(5): 543-545. doi: 10.1364/OL.30.000543
    [2] PU SH L, CHEN X F, CHEN Y P, et al. Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face[J]. Applied Physics Letters, 2005, 86(17): 171904. doi: 10.1063/1.1905808
    [3] LIU T, CHEN X F, DI Z Y, et al. Tunable magneto-optical wavelength filter of long-period fiber grating with magnetic fluids[J]. Applied Physics Letters, 2007, 91(12): 121116. doi: 10.1063/1.2787970
    [4] ZU P, CHAN C C, LEW W S, et al. Magneto-optical fiber sensor based on magnetic fluid[J]. Optics Letters, 2012, 37(3): 398-400. doi: 10.1364/OL.37.000398
    [5] LI X L, DING H. All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid[J]. Optics Letters, 2012, 37(24): 5187-5189. doi: 10.1364/OL.37.005187
    [6] MIAO Y P, WU J X, LIN W, et al. Magnetic field tunability of optical microfiber taper integrated with ferrofluid[J]. Optics Express, 2013, 21(24): 29914-29920. doi: 10.1364/OE.21.029914
    [7] LAYEGHI A, LATIFI H, FRAZAO O. Magnetic field sensor based on nonadiabatic tapered optical fiber with magnetic fluid[J]. IEEE Photonics Technology Letters, 2014, 26(19): 1904-1907. doi: 10.1109/LPT.2014.2341662
    [8] ZHENG Y Z, DONG X Y, CHAN C C, et al. Optical fiber magnetic field sensor based on magnetic fluid and microfiber mode interferometer[J]. Optics Communications, 2015, 336: 5-8. doi: 10.1016/j.optcom.2014.09.026
    [9] MIAO Y P, ZHANG K L, LIU B, et al. Ferrofluid-infiltrated microstructured optical fiber long-period grating[J]. IEEE Photonics Technology Letters, 2013, 25(3): 306-309. doi: 10.1109/LPT.2012.2231669
    [10] GAO R, JIANG Y, ABDELAZIZ S. All-fiber magnetic field sensors based on magnetic fluid-filled photonic crystal fibers[J]. Optics Letters, 2013, 38(9): 1539-1541. doi: 10.1364/OL.38.001539
    [11] WO J H, WANG G H, CUI Y, et al. Refractive index sensor using microfiber-based Mach–Zehnder interferometer[J]. Optics Letters, 2012, 37(1): 67-69. doi: 10.1364/OL.37.000067
    [12] TIAN Z B, YAM S S H, BARNES J, et al. Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers[J]. IEEE Photonics Technology Letters, 2008, 20(8): 626-628. doi: 10.1109/LPT.2008.919507
    [13] XUE Y, YU Y S, YANG R, et al. Ultrasensitive temperature sensor based on an isopropanol-sealed optical microfiber taper[J]. Optics Letters, 2013, 38(8): 1209-1211. doi: 10.1364/OL.38.001209
    [14] LUO Y, LEI X Q, SHI F Q, et al. A novel optical fiber magnetic field sensor based on Mach-Zehnder interferometer integrated with magnetic fluid[J]. Optik, 2018, 174: 252-258. doi: 10.1016/j.ijleo.2018.08.021
    [15] LEI X Q, XU Y CH, YU Y T, et al. Fiber in-line magnetic field sensor based on Mach-Zehnder interferometer integrated with magnetic fluid[J]. Optoelectronics Letters, 2019, 15(1): 43-47. doi: 10.1007/s11801-019-8087-4
    [16] LI ZH Y, LIAO CH R, SONG J, et al. Ultrasensitive magnetic field sensor based on an in-fiber Mach–Zehnder interferometer with a magnetic fluid component[J]. Photonics Research, 2016, 4(5): 197-201. doi: 10.1364/prj.4.000197
    [17] CAI SH H, SERGEEV M, PETROV A, et al. Highly sensitive vector magnetic field sensors based on fiber Mach–Zehnder interferometers[J]. Optics Communications, 2022, 524: 128725. doi: 10.1016/j.optcom.2022.128725
    [18] ZHANG J, WANG CH, CHEN Y K, et al. Fiber structures and material science in optical fiber magnetic field sensors[J]. Frontiers of Optoelectronics, 2022, 15(1): 34. doi: 10.1007/s12200-022-00037-0
    [19] GAO SH CH, ZHANG W G, GENG P CH, et al. Highly sensitive in-fiber refractive index sensor based on down-bitaper seeded up-bitaper pair[J]. IEEE Photonics Technology Letters, 2012, 24(20): 1878-1881. doi: 10.1109/LPT.2012.2217949
    [20] GAO SH CH, ZHANG W G, ZHANG H, et al. Reconfigurable and ultra-sensitive in-line Mach-Zehnder interferometer based on the fusion of microfiber and microfluid[J]. Applied Physics Letters, 2015, 106(8): 084103. doi: 10.1063/1.4913921
    [21] KONSTANTAKI M, CANDIANI A, PISSADAKIS S. Optical fibre long period grating spectral actuators utilizing ferrofluids as outclading overlayers[J]. Journal of the European Optical Society - Rapid Publications, 2011, 6: 11007. doi: 10.2971/jeos.2011.11007
    [22] DAI J X, YANG M H, LI X B, et al. Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating[J]. Optical Fiber Technology, 2011, 17(3): 210-213. doi: 10.1016/j.yofte.2011.02.004
    [23] DONG SH H, PU SH L, HUANG J. Magnetic field sensing based on magneto-volume variation of magnetic fluids investigated by air-gap Fabry-Pérot fiber interferometers[J]. Applied Physics Letters, 2013, 103(11): 111907. doi: 10.1063/1.4821104
    [24] ZU P, CHAN C C, LEW W S, et al. Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber[J]. IEEE Photonics Journal, 2012, 4(2): 491-498. doi: 10.1109/JPHOT.2012.2192473
    [25] DENG M, SUN X K, HAN M, et al. Compact magnetic-field sensor based on optical microfiber Michelson interferometer and Fe3O4 nanofluid[J]. Applied Optics, 2013, 52(4): 734-741. doi: 10.1364/AO.52.000734
    [26] YANG S Y, CHIEH J J, HORNG H E, et al. Origin and applications of magnetically tunable refractive index of magnetic fluid films[J]. Applied Physics Letters, 2004, 84(25): 5204-5206. doi: 10.1063/1.1765201
    [27] LUO L F, PU SH L, TANG J L, et al. Reflective all-fiber magnetic field sensor based on microfiber and magnetic fluid[J]. Optics Express, 2015, 23(14): 18133-18142. doi: 10.1364/OE.23.018133
    [28] LI J, FAN P CH, TIAN ZH, et al. Potential for simultaneous measurement of magnetic field and temperature utilizing fiber taper modal interferometer and magnetic fluid[J]. IEEE Photonics Journal, 2016, 8(6): 6805609.
    [29] GU SH F, SUN W, LI M, et al. Simultaneous measurement of magnetic field and temperature based on photonic crystal fiber plasmonic sensor with dual-polarized modes[J]. Optik, 2022, 259: 169030. doi: 10.1016/j.ijleo.2022.169030
  • 加载中
图(5)
计量
  • 文章访问数:  453
  • HTML全文浏览量:  185
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-06
  • 修回日期:  2023-08-07
  • 录用日期:  2023-10-07
  • 网络出版日期:  2023-12-13

目录

    /

    返回文章
    返回