留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模式能量梯度上升的光束入腔指向方法

邢成文 徐天尧 马超群 栾苏琪 李跃 孟范超 孟令强 吕刚 印雄飞 贾建军

邢成文, 徐天尧, 马超群, 栾苏琪, 李跃, 孟范超, 孟令强, 吕刚, 印雄飞, 贾建军. 模式能量梯度上升的光束入腔指向方法[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0053
引用本文: 邢成文, 徐天尧, 马超群, 栾苏琪, 李跃, 孟范超, 孟令强, 吕刚, 印雄飞, 贾建军. 模式能量梯度上升的光束入腔指向方法[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0053
XING Cheng-wen, XU Tian-yao, MA Chao-qun, LUAN Su-qi, LI Yue, MENG Fan-chao, MENG Ling-qiang, LV Gang, YIN Xiong-fei, JIA Jian-jun. Cavity alignment method based on gradient ascent[J]. Chinese Optics. doi: 10.37188/CO.2025-0053
Citation: XING Cheng-wen, XU Tian-yao, MA Chao-qun, LUAN Su-qi, LI Yue, MENG Fan-chao, MENG Ling-qiang, LV Gang, YIN Xiong-fei, JIA Jian-jun. Cavity alignment method based on gradient ascent[J]. Chinese Optics. doi: 10.37188/CO.2025-0053

模式能量梯度上升的光束入腔指向方法

cstr: 32171.14.CO.2025-0053
基金项目: 国家重点研发计划(No. 2024YFC2206900,No. 2021YFC2201804)
详细信息
    作者简介:

    邢成文(1996—),男,安徽阜阳人,博士研究生,主要研究领域为光电技术。E-mail:xingchengwen21@mails.ucas.ac.cn

    贾建军(1972—),男,山西永济人,教授,主要研究领域为空间光电技术。E-mail:jjjun10@mail.sitp.ac.cn

  • 中图分类号: O43

Cavity alignment method based on gradient ascent

Funds: Supported by National Key R & D Program of China (No. 2024YFC2206900, No. 2021YFC2201804)
More Information
  • 摘要:

    为了解决光束与法布里珀罗腔的入腔失调问题,本文基于谐振模式能量梯度上升自适应调整双反射镜步进,实现所需谐振模式的入腔光束指向。首先,利用双反射镜步进与入腔光束失调的关系,提出分离式入腔光束平移与角度调整方法。其次,利用EfficientNET神经网络对谐振模式图片进行分类,实现不同激光模式的图像识别。最后,利用腔后模式能量梯度调整双反射镜步进,低成本、高效率实现目标谐振模式的入腔耦合。本文的入腔光束指向调整方法为超稳激光器以及引力波探测中法布里珀罗腔的入腔耦合提供了新思路。

     

  • 图 1  光束入腔失调引起的模式能量分布

    Figure 1.  Modes energy distribution by beam misalignment

    图 2  不同阶模式的对数能量与失调量的关系

    Figure 2.  Relationship between logarithmic energy of optical modes and misalignment

    图 3  梯度上升法求解第n阶模式能量的极值点

    Figure 3.  Finding the maximum of n-th order mode energy utilizing gradient ascent

    图 4  双反射镜系统角度组合方案 (a)平移; (b)旋转

    Figure 4.  Angle combination strategies for dual-mirror systems (a) lateral offset; (b) tilt

    图 5  谐振模式数据集采集装置

    Figure 5.  Experimental set-up for resonant mode picture collecting

    图 6  谐振模式数据集示例

    Figure 6.  Examples of the laser mode dataset

    图 7  利用EfficientNet在数据集上训练的准确度和损失曲线

    Figure 7.  Accuracy and loss curves for mode picture recognition using EfficientNet

    图 8  利用EfficientNet在测试集上模式图片识别的混淆矩阵

    Figure 8.  Confusion matrix of the mode picture recognition on the test dataset by EfficientNet

    图 9  不同模式的强度图(a) HG00模式;(b) HG01模式;(c) HG02模式;(d) LG01模式

    Figure 9.  Angle combination strategies for dual-mirror systems (a) HG00; (b) HG01; (c) HG02; (d) LG01

    图 10  实验装置框图

    Figure 10.  Block diagram of the experimental set-up

    图 11  实验装置图

    Figure 11.  Experimental set-up

    图 12  基模强度对数值与调整角度的关系

    Figure 12.  Relationship between the tilt angles and logarithmic intensity of the fundamental mode

    图 13  基于梯度上升的入腔调整结果

    Figure 13.  Cavity recoupling based on mode energy gradient ascent

    图 14  锁定激光到不同模式上

    Figure 14.  Laser frequency locking on different optical mode

  • [1] AASI J, ABBOTT B P, ABBOTT R, et al. Advanced LIGO[J]. Classical and Quantum Gravity, 2015, 32(7): 074001. doi: 10.1088/0264-9381/32/7/074001
    [2] AASI J, ABADIE J, ABBOTT B P, et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light[J]. Nature Photonics, 2013, 7(8): 613-619. doi: 10.1038/nphoton.2013.177
    [3] DANZMANN K, PRINCE T, BINETRUY P, et al. LISA: unveiling a hidden universe[R]. Paris: European Space Agency, 2011.
    [4] BLOOM B, NICHOLSON T L, WILLIAMS J R, et al. An optical lattice clock with accuracy and stability at the 10−18 level[J]. Nature, 2014, 506(7486): 71-75. doi: 10.1038/nature12941
    [5] DREVER R W P, HALL J L, KOWALSKI F V, et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 1983, 31(2): 97-105.
    [6] CAHILLANE C, MANSELL G L, SIGG D. Laser frequency noise in next generation gravitational wave detectors[J]. Optics Express, 2021, 29: 42144-42161. doi: 10.1364/OE.439253
    [7] ROSI G, SORRENTINO F, CACCIAPUOTI L, et al. Precision measurement of the Newtonian gravitational constant using cold atoms[J]. Nature, 2014, 510(7506): 518-521. doi: 10.1038/nature13433
    [8] KESSLER T, HAGEMANN C, GREBING C, et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 2012, 6(10): 687-692. doi: 10.1038/nphoton.2012.217
    [9] ANDERSON D Z. Alignment of resonant optical cavities[J]. Applied Optics, 1984, 23(17): 2944-2949. doi: 10.1364/AO.23.002944
    [10] MAVALVALA N. Alignment issues in laser interferometric gravitational-wave detectors[D]. Cambridge: Massachusetts Institute of Technology, 1997.
    [11] BOND C, BROWN D, FREISE A, et al. Interferometer techniques for gravitational-wave detection[J]. Living Reviews in Relativity, 2016, 19(1): 3. doi: 10.1007/s41114-016-0002-8
    [12] MORRISON E, MEERS B J, ROBERTSON D I, et al. Automatic alignment of optical interferometers[J]. Applied Optics, 1994, 33(22): 5041-5049. doi: 10.1364/AO.33.005041
    [13] MORRISON E, MEERS B J, ROBERTSON D I, et al. Experimental demonstration of an automatic alignment system for optical interferometers[J]. Applied Optics, 1994, 33(22): 5037-5040. doi: 10.1364/AO.33.005037
    [14] GROTE H, HEINZEL G, FREISE A, et al. The automatic alignment system of GEO 600[J]. Classical and Quantum Gravity, 2002, 19(7): 1849-1855. doi: 10.1088/0264-9381/19/7/384
    [15] SAYEH M R, BILGER H R, HABIB T. Optical resonator with an external source: excitation of the Hermite-Gaussian modes[J]. Applied Optics, 1985, 24(22): 3756-3761. doi: 10.1364/AO.24.003756
    [16] TAO L, KELLEY-DERZON J, GREEN A C, et al. Power coupling losses for misaligned and mode-mismatched higher-order Hermite–Gauss modes[J]. Optics Letters, 2021, 46(11): 2694-2697. doi: 10.1364/OL.426999
    [17] HOU Y. Control system for mirror tilting by deep learning[D]. Tokyo: Tokyo Institute of Technology, 2023. (查阅网上资料, 未找到本条文献信息, 请确认).
    [18] MENG F CH, LI Z CH, LI J Q, et al. An active method for coupling laser with a high-finesse Fabry–Pérot cavity in ultra-stable lasers[J]. Optics & Laser Technology, 2024, 171: 110371.
    [19] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[C]. Proceedings of the 9th International Conference on Learning Representations, ICLR, 2021.
    [20] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2023: 7464-7475.
    [21] KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, IEEE, 2023: 4015-4026.
    [22] SOROKIN D, ULANOV A, SAZHINA E, et al. Interferobot: aligning an optical interferometer by a reinforcement learning agent[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, Curran Associates Inc. , 2020: 1110.
    [23] SHAO R, ZHANG G, GONG X. Generalized robust training scheme using genetic algorithm for optical neural networks with imprecise components[J]. Photonics Research, 2022, 10(8): 1868-1876. doi: 10.1364/PRJ.449570
    [24] QIN J Y, KINDER K, JADHAV S, et al. Automated alignment of an optical cavity using machine learning[J]. Classical and Quantum Gravity, 2025, 42(4): 045003. doi: 10.1088/1361-6382/ada864
    [25] TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[C]. Proceedings of the 36th International Conference on Machine Learning, ICML, 2019: 6105-6114.
  • 加载中
图(14)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  3
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-04-29

目录

    /

    返回文章
    返回