留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卷积拟合在法布里-珀罗(F-P)谐振腔线宽测量实验中的应用

戚一 高雪荣 王少鑫 李磐 沈琪皓 齐克奇 罗子人 刘河山

戚一, 高雪荣, 王少鑫, 李磐, 沈琪皓, 齐克奇, 罗子人, 刘河山. 卷积拟合在法布里-珀罗(F-P)谐振腔线宽测量实验中的应用[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0024
引用本文: 戚一, 高雪荣, 王少鑫, 李磐, 沈琪皓, 齐克奇, 罗子人, 刘河山. 卷积拟合在法布里-珀罗(F-P)谐振腔线宽测量实验中的应用[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0024
QI Yi, GAO Xuerong, WANG Shaoxin, LI Pan, SHEN Qihao, QI Keqi, LUO Ziren, LIU Heshan. Application of convolutional fitting in Fabry-Perot (F-P) resonator linewidth measurement experiments[J]. Chinese Optics. doi: 10.37188/CO.2025-0024
Citation: QI Yi, GAO Xuerong, WANG Shaoxin, LI Pan, SHEN Qihao, QI Keqi, LUO Ziren, LIU Heshan. Application of convolutional fitting in Fabry-Perot (F-P) resonator linewidth measurement experiments[J]. Chinese Optics. doi: 10.37188/CO.2025-0024

卷积拟合在法布里-珀罗(F-P)谐振腔线宽测量实验中的应用

cstr: 32171.14.CO.2025-0024
基金项目: 国家重点研发计划资助(No. 2021YFC2202902,No. 2020YFC2200104);中国兵器工业集团有限公司激光器件技术重点实验室开放资金资助(No. KLLDT203212)
详细信息
    作者简介:

    戚 一(1999—),男,四川攀枝花人,硕士研究生在读,主要从事空间引力波测量方面的研究。E-mail:2022E8007382036@mails.ucas.ac.cn

    高雪荣(1994—),女,新疆伊犁人,硕士,工程师,2022年于西南技术物理研究所获得工学硕士学位,主要从事激光器频率稳定方面的研究。E-mail:gaoxuerong@imech.ac.cn

  • 中图分类号: O562

Application of convolutional fitting in Fabry-Perot (F-P) resonator linewidth measurement experiments

Funds: Supported by the National Key Research and Development Program (No. 2021YFC2202902, No. 2020YFC2200104); Open Foundation of Key Laboratory of Laser Devices and Technology of China North Industries Group Co., LTD (No. KLLDT203212)
More Information
  • 摘要:

    针对传统扫频法因激光线宽引入的测量误差,基于激光光谱(高斯型)与法布里-珀罗(F-P)谐振腔(洛伦兹型)的卷积特性,提出了基于卷积拟合的信号分析方法,搭建了扫频实验平台,对两台F-P腔进行验证。首先,结合仿真量化了激光线宽对信号轮廓的影响,介绍了拟合算法的主要流程。其次,通过拍频对入射激光光谱进行测量,实验结果表明其光谱呈高斯形,线宽为 (11.59±1.23) kHz。接下来,评估了扫频平台的频率调制误差,使用扫频法对自制F-P腔(1号腔)和进口F-P腔(2号腔)进行了线宽测量,并对比了洛伦兹拟合与卷积拟合的结果,其中,1号腔的洛伦兹与卷积拟合结果分别为 (204.1±11.2) kHz和 (203.9±11.2) kHz,差异不显著。2号腔的标定线宽为4.17 kHz,洛伦兹拟合的结果为 (8.97±0.42) kHz,卷积拟合的结果为(4.42±0.50) kHz。实验结果表明,当激光线宽与腔相近时,本方法能够很好地测量出腔的真实线宽,当激光线宽(11.59 kHz)远小于腔(204.1 kHz)时,本方法的结果与洛伦兹拟合方法相近。本工作拓宽了窄线宽F-P腔线宽测量设备选择范围。

     

  • 图 1  扫频法原理

    Figure 1.  Operational principle of swept-frequency measurement

    图 2  入射激光线宽对信号轮廓的影响

    Figure 2.  Impact of laser linewidth on F-P cavity lineshape distortions

    图 3  卷积拟合方法

    Figure 3.  Convolution Fitting

    图 4  数据分箱:左图为分箱前,右图为分箱后

    Figure 4.  Data binning effects on signal resolution Raw spectral data | Binned signal reconstruction

    图 5  计算输出的伪代码展示

    Figure 5.  Example of pseudocode for computing the output

    图 6  激光线宽测量结果(a)分辨带宽7.5 kHz;(b) 分辨带宽1 kHz

    Figure 6.  Laser Linewidth Results (a) RBW=7.5 kHz; (b) RBW=1 kHz

    图 7  扫频法光纤实验平台

    Figure 7.  Frequency sweep fiber optic experiment platform

    图 8  1号腔激光器频率标定实验(a)控制压电陶瓷的三角波信号,线性区间为0.24 s;(b)拍频信号,峰峰值为15.69 MHz

    Figure 8.  Frequency Calibration for Cavity 1 (a) Triangular wave (PZT control), linear region: 0.24 s; (b) Beat signal, peak-to-peak: 15.69 MHz.

    图 9  周期内的拟合残差

    Figure 9.  Fitting residuals within the cycle

    图 10  扫频法测量2号腔

    Figure 10.  Frequency sweeping method to measure cavity No. 2

    图 11  扫频法测量1号腔

    Figure 11.  Frequency sweeping method to measure cavity No. 1

    表  1  不同衰减处的激光线宽 (RBW=7.5 kHz)

    Table  1.   Comparison of measured laser linewidth with theoretical value (RBW=7.5 kHz)

    测量结果/Hz 洛伦兹线形 高斯线形
    −3 dB 8983 2Δν 1.41Δν
    −10 dB 16619 6Δν 2.58Δν
    −20 dB 23806 20Δν 3.65Δν
    下载: 导出CSV

    表  2  −20 dB处的激光线宽 (RBW=1 kHz)

    Table  2.   Laser linewidth at −20 dB (RBW=1 kHz)

    序号测量结果/Hz
    139595
    243387
    348260
    435266
    545008
    下载: 导出CSV

    表  3  10个周期的频率调谐速度

    Table  3.   Frequency tuning speed over 10 cycles

    序号调谐速度(MHz/s)
    165.891
    267.058
    364.370
    464.468
    564.742
    667.588
    764.635
    864.687
    967.083
    1067.320
    平均值65.891
    标准差1.396
    下载: 导出CSV

    表  4  2号腔实验结果:激光线宽的参考值由3.1给出,腔线宽的参考值为出厂值

    Table  4.   Cavity No. 2 measurement results: the reference value for the laser linewidth is given by 3.1, and the reference value for the cavity linewidth is the factory value.

    激光线宽/kHz腔线宽/kHz
    G-L拟合10.84±0.914.42±0.50
    L拟合-8.97±0.42
    参考值11.59±1.234.17
    下载: 导出CSV

    表  5  1号腔线宽测量结果

    Table  5.   Cavity No.1 linewidth measurement results

    腔线宽/kHz
    L拟合204.1±11.2
    G-L拟合203.9±11.2
    下载: 导出CSV
  • [1] SAVCHENKOV A A, MATSKO A B, ILCHENKO V S, et al. Optical resonators with ten million finesse[J]. Optics Express, 2007, 15(11): 6768-6773. doi: 10.1364/OE.15.006768
    [2] 曹开明. 基于PDH技术的激光稳频控制研究与实现[D]. 南昌: 南昌大学, 2024.

    CAO K M. Research and implementation of laser frequency stabilization control based on the Pound-Drever-Hall technique[D]. Nanchang: Nanchang University, 2024. (in Chinese).
    [3] LIANG W, LIU Y F. Compact sub-hertz linewidth laser enabled by self-injection lock to a sub-milliliter FP cavity[J]. Optics Letters, 2023, 48(5): 1323-1326. doi: 10.1364/OL.481552
    [4] 徐欣, 谈宜东, 穆衡霖, 等. 空间引力波探测中的激光干涉多自由度测量技术[J]. 激光与光电子学进展,2023,60(3):0312006.

    XU X, TAN Y D, MU H L, et al. Laser interferometric multi-degree-of-freedom measurement technology in space gravitational-wave detection[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312006. (in Chinese).
    [5] 段会宗, 骆颖欣, 张静怡, 等. 星间激光干涉测量技术[J]. 中山大学学报(自然科学版),2021,60(1-2):162-177.

    DUAN H Z, LUO Y X, ZHANG J Y, et al. Inter-satellite laser interferometry[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(1-2): 162-177. (in Chinese).
    [6] 王娟, 齐克奇, 王少鑫, 等. 面向空间引力波探测的激光干涉技术研究进展及展望[J]. 中国科学: 物理学 力学 天文学, 2024, 54(7): 109-127.

    WANG J, QI K Q, WANG SH X, et al. Advance and prospect in the study of laser interferometry technology for space gravitational wave detection[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2024, 54(7): 109-127. (in Chinese).
    [7] LU X Y, LIU X, TIAN Q L, et al. Finesse measurement for high-power optical enhancement cavity[J]. Chinese Physics B, 2023, 33(1): 014205. doi: 10.1088/1674-1056/acd8ad
    [8] 杨捷. 光腔衰荡法腔损耗测量技术研究[D]. 西安: 西安工业大学, 2014.

    YANG J. Cavity ring-down cavity loss measurement method research[D]. Xi’an: Xi’an Technological University, 2014. (in Chinese).
    [9] UEHARA N, UEDA K. Accurate measurement of ultralow loss in a high-finesse Fabry-Perot interferometer using the frequency response functions[J]. Applied Physics B, 1995, 61(1): 9-15. doi: 10.1007/BF01090966
    [10] KUNTZ K B, WHEATLEY T A, SONG H B, et al. Ultra-wide frequency response measurement of an optical system with a DC photo-detector[J]. Optics Express, 2017, 25(2): 573-586. doi: 10.1364/OE.25.000573
    [11] LOCKE C R, STUART D, IVANOV E N, et al. A simple technique for accurate and complete characterisation of a Fabry-Perot cavity[J]. Optics Express, 2009, 17(24): 21935-21943. doi: 10.1364/OE.17.021935
    [12] CHEN M, MENG ZH, WANG J F, et al. Ultra-narrow linewidth measurement based on Voigt profile fitting[J]. Optics Express, 2015, 23(5): 6803-6808. doi: 10.1364/OE.23.006803
    [13] 卢飞飞, 白建东, 侯晓凯, 等. 置于超高真空环境且控温的超稳光学腔的腔线宽及零膨胀温度点测定[J]. 量子光学学报,2022,28(4):288-295.

    LU F F, BAI J D, HOU X K, et al. Measurement of the cavity linewidth and the zero-expansion temperature of a temperature-stabilized ultra-stable optical cavity placed in ultra-high vacuum chamber[J]. Journal of Quantum Optics, 2022, 28(4): 288-295. (in Chinese).
    [14] 刘军, 陈帛雄, 许冠军, 等. 高精细度光学参考腔的自主化研制[J]. 物理学报,2017,66(8):080601. doi: 10.7498/aps.66.080601

    LIU J, CHEN B X, XU G J, et al. Self-reliance and independently developed high-finesse spherical ultrastable optical reference cavity[J]. Acta Physica Sinica, 2017, 66(8): 080601. (in Chinese). doi: 10.7498/aps.66.080601
    [15] HUN X N, BAI ZH X, WANG J P, et al. Convolution error reduction for a Fabry–Pérot-based linewidth measurement: a theoretical and experimental study[J]. Photonics, 2022, 9(12): 1004. doi: 10.3390/photonics9121004
    [16] 彭雪峰, 马秀荣, 张双根, 等. 两台独立激光器拍频线型对线宽测量的影响[J]. 中国激光,2011,38(4):0408002. doi: 10.3788/CJL201138.0408002

    PENG X F, MA X R, ZHANG SH G, et al. Effect of beat frequency linetype on measurement of laser linewidth using two independent lasers[J]. Chinese Journal of Lasers, 2011, 38(4): 0408002. (in Chinese). doi: 10.3788/CJL201138.0408002
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  8
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-04-25

目录

    /

    返回文章
    返回