Application of convolutional fitting in Fabry-Perot (F-P) resonator linewidth measurement experiments
-
摘要:
针对传统扫频法因激光线宽引入的测量误差,基于激光光谱(高斯型)与法布里-珀罗(F-P)谐振腔(洛伦兹型)的卷积特性,提出了基于卷积拟合的信号分析方法,搭建了扫频实验平台,对两台F-P腔进行验证。首先,结合仿真量化了激光线宽对信号轮廓的影响,介绍了拟合算法的主要流程。其次,通过拍频对入射激光光谱进行测量,实验结果表明其光谱呈高斯形,线宽为 (11.59±1.23) kHz。接下来,评估了扫频平台的频率调制误差,使用扫频法对自制F-P腔(1号腔)和进口F-P腔(2号腔)进行了线宽测量,并对比了洛伦兹拟合与卷积拟合的结果,其中,1号腔的洛伦兹与卷积拟合结果分别为 (204.1±11.2) kHz和 (203.9±11.2) kHz,差异不显著。2号腔的标定线宽为4.17 kHz,洛伦兹拟合的结果为 (8.97±0.42) kHz,卷积拟合的结果为(4.42±0.50) kHz。实验结果表明,当激光线宽与腔相近时,本方法能够很好地测量出腔的真实线宽,当激光线宽(11.59 kHz)远小于腔(204.1 kHz)时,本方法的结果与洛伦兹拟合方法相近。本工作拓宽了窄线宽F-P腔线宽测量设备选择范围。
Abstract:To address measurement inaccuracies in traditional swept-frequency methods caused by laser linewidth effects, this study proposes a convolution-based signal analysis approach that accounts for the convolutional relationship between Gaussian-shaped laser spectra and Lorentzian-type Fabry-Perot (F-P) resonator responses. An experimental platform employing two F-P cavities (one custom-built and one commercial) demonstrated three key advancements: 1) Quantitative simulations established laser linewidth impacts on signal profiles, coupled with a dedicated fitting algorithm; 2) Beat-frequency characterization revealed a Gaussian laser lineshape with 11.59 ± 1.23 kHz linewidth; 3) Comparative analysis of Lorentzian versus convolutional fitting across different linewidth regimes showed critical performance differences. For Cavity 1 (204.1 kHz nominal), both methods yielded comparable results (Lorentzian: 204.1 ± 11.2 kHz; Convolutional: 203.9 ± 11.2 kHz), while for Cavity 2 (4.17 kHz reference), convolutional fitting achieved superior accuracy (4.42 ± 0.50 kHz vs. Lorentzian's 8.97 ± 0.42 kHz). The methodology effectively recovers true linewidths when laser and cavity linewidths are spectrally comparable, and converges with Lorentzian fitting when laser linewidth (11.59 kHz)
$\ll $ cavity linewidth (204.1 kHz). This approach significantly expands the applicability range of narrow-linewidth F-P cavity measurement systems by relaxing laser source requirements.-
Key words:
- F-P Cavity /
- linewidth /
- convolution fitting
-
表 1 不同衰减处的激光线宽 (RBW=7.5 kHz)
Table 1. Comparison of measured laser linewidth with theoretical value (RBW=7.5 kHz)
测量结果/Hz 洛伦兹线形 高斯线形 −3 dB 8983 2Δν 1.41Δν −10 dB 16619 6Δν 2.58Δν −20 dB 23806 20Δν 3.65Δν 表 2 −20 dB处的激光线宽 (RBW=1 kHz)
Table 2. Laser linewidth at −20 dB (RBW=1 kHz)
序号 测量结果/Hz 1 39595 2 43387 3 48260 4 35266 5 45008 表 3 10个周期的频率调谐速度
Table 3. Frequency tuning speed over 10 cycles
序号 调谐速度(MHz/s) 1 65.891 2 67.058 3 64.370 4 64.468 5 64.742 6 67.588 7 64.635 8 64.687 9 67.083 10 67.320 平均值 65.891 标准差 1.396 表 4 2号腔实验结果:激光线宽的参考值由3.1给出,腔线宽的参考值为出厂值
Table 4. Cavity No. 2 measurement results: the reference value for the laser linewidth is given by 3.1, and the reference value for the cavity linewidth is the factory value.
激光线宽/kHz 腔线宽/kHz G-L拟合 10.84±0.91 4.42±0.50 L拟合 - 8.97±0.42 参考值 11.59±1.23 4.17 表 5 1号腔线宽测量结果
Table 5. Cavity No.1 linewidth measurement results
腔线宽/kHz L拟合 204.1±11.2 G-L拟合 203.9±11.2 -
[1] SAVCHENKOV A A, MATSKO A B, ILCHENKO V S, et al. Optical resonators with ten million finesse[J]. Optics Express, 2007, 15(11): 6768-6773. doi: 10.1364/OE.15.006768 [2] 曹开明. 基于PDH技术的激光稳频控制研究与实现[D]. 南昌: 南昌大学, 2024.CAO K M. Research and implementation of laser frequency stabilization control based on the Pound-Drever-Hall technique[D]. Nanchang: Nanchang University, 2024. (in Chinese). [3] LIANG W, LIU Y F. Compact sub-hertz linewidth laser enabled by self-injection lock to a sub-milliliter FP cavity[J]. Optics Letters, 2023, 48(5): 1323-1326. doi: 10.1364/OL.481552 [4] 徐欣, 谈宜东, 穆衡霖, 等. 空间引力波探测中的激光干涉多自由度测量技术[J]. 激光与光电子学进展,2023,60(3):0312006.XU X, TAN Y D, MU H L, et al. Laser interferometric multi-degree-of-freedom measurement technology in space gravitational-wave detection[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312006. (in Chinese). [5] 段会宗, 骆颖欣, 张静怡, 等. 星间激光干涉测量技术[J]. 中山大学学报(自然科学版),2021,60(1-2):162-177.DUAN H Z, LUO Y X, ZHANG J Y, et al. Inter-satellite laser interferometry[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(1-2): 162-177. (in Chinese). [6] 王娟, 齐克奇, 王少鑫, 等. 面向空间引力波探测的激光干涉技术研究进展及展望[J]. 中国科学: 物理学 力学 天文学, 2024, 54(7): 109-127.WANG J, QI K Q, WANG SH X, et al. Advance and prospect in the study of laser interferometry technology for space gravitational wave detection[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2024, 54(7): 109-127. (in Chinese). [7] LU X Y, LIU X, TIAN Q L, et al. Finesse measurement for high-power optical enhancement cavity[J]. Chinese Physics B, 2023, 33(1): 014205. doi: 10.1088/1674-1056/acd8ad [8] 杨捷. 光腔衰荡法腔损耗测量技术研究[D]. 西安: 西安工业大学, 2014.YANG J. Cavity ring-down cavity loss measurement method research[D]. Xi’an: Xi’an Technological University, 2014. (in Chinese). [9] UEHARA N, UEDA K. Accurate measurement of ultralow loss in a high-finesse Fabry-Perot interferometer using the frequency response functions[J]. Applied Physics B, 1995, 61(1): 9-15. doi: 10.1007/BF01090966 [10] KUNTZ K B, WHEATLEY T A, SONG H B, et al. Ultra-wide frequency response measurement of an optical system with a DC photo-detector[J]. Optics Express, 2017, 25(2): 573-586. doi: 10.1364/OE.25.000573 [11] LOCKE C R, STUART D, IVANOV E N, et al. A simple technique for accurate and complete characterisation of a Fabry-Perot cavity[J]. Optics Express, 2009, 17(24): 21935-21943. doi: 10.1364/OE.17.021935 [12] CHEN M, MENG ZH, WANG J F, et al. Ultra-narrow linewidth measurement based on Voigt profile fitting[J]. Optics Express, 2015, 23(5): 6803-6808. doi: 10.1364/OE.23.006803 [13] 卢飞飞, 白建东, 侯晓凯, 等. 置于超高真空环境且控温的超稳光学腔的腔线宽及零膨胀温度点测定[J]. 量子光学学报,2022,28(4):288-295.LU F F, BAI J D, HOU X K, et al. Measurement of the cavity linewidth and the zero-expansion temperature of a temperature-stabilized ultra-stable optical cavity placed in ultra-high vacuum chamber[J]. Journal of Quantum Optics, 2022, 28(4): 288-295. (in Chinese). [14] 刘军, 陈帛雄, 许冠军, 等. 高精细度光学参考腔的自主化研制[J]. 物理学报,2017,66(8):080601. doi: 10.7498/aps.66.080601LIU J, CHEN B X, XU G J, et al. Self-reliance and independently developed high-finesse spherical ultrastable optical reference cavity[J]. Acta Physica Sinica, 2017, 66(8): 080601. (in Chinese). doi: 10.7498/aps.66.080601 [15] HUN X N, BAI ZH X, WANG J P, et al. Convolution error reduction for a Fabry–Pérot-based linewidth measurement: a theoretical and experimental study[J]. Photonics, 2022, 9(12): 1004. doi: 10.3390/photonics9121004 [16] 彭雪峰, 马秀荣, 张双根, 等. 两台独立激光器拍频线型对线宽测量的影响[J]. 中国激光,2011,38(4):0408002. doi: 10.3788/CJL201138.0408002PENG X F, MA X R, ZHANG SH G, et al. Effect of beat frequency linetype on measurement of laser linewidth using two independent lasers[J]. Chinese Journal of Lasers, 2011, 38(4): 0408002. (in Chinese). doi: 10.3788/CJL201138.0408002 -