留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间引力波探测中超低附加相噪频综研究

王雷刚 云恩学 罗鑫 杨腾辉 王弼松 孙思宇 李程运 刘军良 高瑞弘 赵峰 张首刚

王雷刚, 云恩学, 罗鑫, 杨腾辉, 王弼松, 孙思宇, 李程运, 刘军良, 高瑞弘, 赵峰, 张首刚. 空间引力波探测中超低附加相噪频综研究[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0015
引用本文: 王雷刚, 云恩学, 罗鑫, 杨腾辉, 王弼松, 孙思宇, 李程运, 刘军良, 高瑞弘, 赵峰, 张首刚. 空间引力波探测中超低附加相噪频综研究[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0015
WANG Lei-gang, YUN En-xue, LUO Xin, YANG Teng-hui, WANG Bi-song, SUN Si-yu, LI Cheng-yun, LIU Jun-liang, GAO Rui-hong, ZHAO Feng, ZHANG Shou-gang. Ultralow residual phase noise frequency synthesizer for space gravitational wave detection[J]. Chinese Optics. doi: 10.37188/CO.2025-0015
Citation: WANG Lei-gang, YUN En-xue, LUO Xin, YANG Teng-hui, WANG Bi-song, SUN Si-yu, LI Cheng-yun, LIU Jun-liang, GAO Rui-hong, ZHAO Feng, ZHANG Shou-gang. Ultralow residual phase noise frequency synthesizer for space gravitational wave detection[J]. Chinese Optics. doi: 10.37188/CO.2025-0015

空间引力波探测中超低附加相噪频综研究

cstr: 32171.14.CO.2025-0015
基金项目: 国家重点研发计划(No. 2023YFC2205400);国家自然科学基金(No. 12173043,No. 017311321)
详细信息
    作者简介:

    云恩学(1982—),贵州遵义人,博士,研究员,博士生导师,2012年于中国科学院武汉物理与数学研究所获得博士学位,主要从事微小型原子钟、新型光钟、高性能微波频综、世界时测量等方面的研究。Email:yunenxue@ntsc.ac.cn

  • 中图分类号: O439

Ultralow residual phase noise frequency synthesizer for space gravitational wave detection

Funds: Supported by the National Key R & D Program of China (No. 2023YFC2205400); National Natural Science Foundation of China (No. 12173043, No. U1731132)
More Information
  • 摘要:

    基于激光干涉的空间引力波探测,对毫赫兹频段内的时钟噪声抑制水平提出了极高要求,通常通过边带倍频时钟噪声传递和导频音等技术来抑制时钟噪声。针对时钟噪声抑制技术需要的超低附加相噪的电光调制器(EOM)调制微波(2.4 GHz)和导频音射频信号(75 MHz),本文设计、搭建并比较了两种微波合成链路。通过低相噪锁相介质振荡器(PDRO)、分频等技术,实现了超低附加相位噪频综。经测量,75 MHz导频信号在0.1 mHz、1 mHz、10 mHz、100 mHz、1 Hz处相对应的残余相噪分别为$ 1.06\times {10}^{-3}\;\mathrm{r}\mathrm{a}\mathrm{d}/\sqrt{\mathrm{H}\mathrm{z}} $$ 8.18\times {10}^{-5}\;\mathrm{r}\mathrm{a}\mathrm{d}/\sqrt{\mathrm{H}\mathrm{z}} $$ 7.63\times {10}^{-6}\;\mathrm{r}\mathrm{a}\mathrm{d}/\sqrt{\mathrm{H}\mathrm{z}} $, $ 1.30\times {10}^{-6}\;\mathrm{r}\mathrm{a}\mathrm{d}/\sqrt{\mathrm{H}\mathrm{z}} $$ 1.53\times {10}^{-7}\;\mathrm{r}\mathrm{a}\mathrm{d}/\sqrt{\mathrm{H}\mathrm{z}} $。该导频信号是经2.4 GHz微波分频产生时,后者的残余相噪更低,因而在20 mHz~1 Hz 频段内,两者的残余相噪都满足“太极计划”需要。后期经过降低功分、频分等器件的附加相位噪声、减小关键器件的温度敏感度及增加温度控制、导频校正等技术,还可进一步降低该频综的本底噪声,有望在0.1 mHz-1 Hz的整个频段内都满足“太极计划”需求。本文对于频综的研究结果为我国空间引力波探测需要的时频系统研制奠定了坚实基础。

     

  • 图 1  频综链路结构

    Figure 1.  Structure of frequency synthesizer link

    图 2  (a)24次直接倍频器原理框图。(b)24次倍频器频谱图。插图:24次倍频器模块实物图。频谱仪的分辨率带宽(Resolution Bandwidth,RBW)和视频带宽(Video Bandwidth,VBW)均为91 Hz。

    Figure 2.  (a) Principle diagram and (b) spectrum diagram of a 24th-order direct frequency multiplier. Spectrum diagram of 24th-order frequency multiplier. Illustration: physical photo of the 24th-order frequency multiplier. The RBW and VBW of the spectrum analyzer are both 91 Hz.

    图 3  2.4 GHz PDRO(a)原理框图及(b)频谱图。插图:2.4 GHz PDRO模块实物图。频谱仪的RBW和VBW均为91 Hz。

    Figure 3.  (a) Principle diagram and (b) spectrum diagram of a 2.4 GHz PDRO. Illustration: physical photo of the 2.4 GHz PDRO. The RBW and VBW of the spectrum analyzer are both 91 Hz.

    图 4  频综链路及关键部件的绝对相位噪声。插图:绝对相噪测试构型

    Figure 4.  The absolute phase noise of the frequency synthesizer system and key components. Illustration: absolute phase noise test configuration

    图 5  残余相位噪声测试构型

    Figure 5.  Residual phase noise measurement structure

    图 6  2.4 GHz频综链路的残余相位噪声

    Figure 6.  Residual phase noise of the 2.4 GHz frequency synthesizer system

    图 8  相位温度敏感度实验结果。(a)、(c)温度变化顺序。(b)24次倍频链路输出微波相位的温度敏感度。(d)PDRO链路输出微波相位的温度敏感度

    Figure 8.  Experimental results of phase temperature sensitivity. (a) and (c) represent temperature variation sequence. (b) temperature sensitivity of the output microwave phase in the 24-order frequency multiplication system. (d) Temperature sensitivity of the output microwave phase in the PDRO

    图 7  75 MHz频综链路及关键部件的残余相位噪声,插图:1 mHz~100 mHz区间残余相噪

    Figure 7.  Residual phase noise of the 75 MHz frequency synthesizer system and key components. Illustration: residual phase noise in the 1 mHz–100 mHz range

    图 9  频综链路的残余频率稳定度与理论极限

    Figure 9.  Residual frequency stability of the frequency synthesizer system and the theoretical limit

    表  1  残余相噪测量结果与太极计划需求

    Table  1.   Residual phase noise measurement results and Taiji program requirements (rad·${{\mathrm{Hz}}}^{-\frac{1}{2}} $)

    频偏 太极计划残余相噪
    需求
    2.4 GHz频综
    残余相噪
    75 MHz频综
    残余相噪
    0.1 mHz $ 5.79\times {10}^{-3} $ $ \leqslant 1.06\times {10}^{-3} $ $ 1.06\times {10}^{-3} $
    1 mHz $ 5.93\times {10}^{-5} $ $ \leqslant 8.18\times {10}^{-5} $ $ 8.18\times {10}^{-5} $
    10 mHz $ 6.30\times {10}^{-6} $ $ 1.19\times {10}^{-6} $ $ 7.63\times {10}^{-6} $
    100 mHz $ 6.28\times {10}^{-6} $ $ 2.22\times {10}^{-7} $ $ 1.30\times {10}^{-6} $
    1 Hz $ 6.28\times {10}^{-6} $ $ 6.96\times {10}^{-8} $ $ 1.53\times {10}^{-7} $
    下载: 导出CSV
  • [1] 吴岳良,胡文瑞, 王建宇, 等. 空间引力波探测综述与拟解决的科学问题[J]. 空间科学学报,2023,43(4):589-599.

    WU Y L, HU W R, WANG J Y, et al. Review and scientific objectives of spaceborne gravitational wave detection missions (in Chinese)[J]. Chinese Journal of Space Science, 2023, 43(4): 589-599.
    [2] BARKE S, BRAUSE N, BYKOV I, et al. LISA metrology system - final report[R]. Lyngby: Denmark Technical University of Denmark, 2014.
    [3] ARMANO M, AUDLEY H, AUGER G, et al. Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results[J]. Physical Review Letters, 2016, 116(23): 231101. doi: 10.1103/PhysRevLett.116.231101
    [4] ARMANO M, AUDLEY H, BAIRD J, et al. Sensor noise in LISA Pathfinder: in-flight performance of the optical test mass readout[J]. Physical Review Letters, 2021, 126(13): 131103. doi: 10.1103/PhysRevLett.126.131103
    [5] ARMANO M, AUDLEY H, BAIRD J, et al. Beyond the required LISA free-fall performance: new LISA pathfinder results down to 20 μHz[J]. Physical Review Letters, 2018, 120(6): 061101. doi: 10.1103/PhysRevLett.120.061101
    [6] ARMANO M, AUDLEY H, BAIRD J, et al. LISA pathfinder performance confirmed in an open-loop configuration: results from the free-fall actuation mode[J]. Physical Review Letters, 2019, 123(11): 111101. doi: 10.1103/PhysRevLett.123.111101
    [7] WANNER G. Space-based gravitational wave detection and how LISA pathfinder successfully paved the way[J]. Nature Physics, 2019, 15(3): 200-202. doi: 10.1038/s41567-019-0462-3
    [8] HU W R, WU Y L. The Taiji program in space for gravitational wave physics and the nature of gravity[J]. National Science Review, 2017, 4(5): 685-686. doi: 10.1093/nsr/nwx116
    [9] WU Y L, LUO Z R, WANG J Y, et al. China’s first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna[J]. Communications Physics, 2021, 4(1): 34. doi: 10.1038/s42005-021-00529-z
    [10] LUO J, BAI Y ZH, CAI L, et al. The first round result from the TianQin-1 satellite[J]. Classical and Quantum Gravity, 2020, 37(18): 185013. doi: 10.1088/1361-6382/aba66a
    [11] LUO J, CHEN L SH, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010. doi: 10.1088/0264-9381/33/3/035010
    [12] HUANG SH J, HU Y M, KOROL V, et al. Science with the TianQin observatory: preliminary results on galactic double white dwarf binaries[J]. Physical Review D, 2020, 102(6): 063021. doi: 10.1103/PhysRevD.102.063021
    [13] 罗俊, 艾凌皓, 艾艳丽, 等. 天琴计划简介[J]. 中山大学学报(自然科学版),2021,60(1-2):1-19.

    LUO J, AI L H, AI Y L, et al. A brief introduction to the TianQin project[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(1-2): 1-19. (in Chinese).
    [14] KLIPSTEIN W, HALVERSON P G, PETERS R, et al. Clock noise removal in LISA[J]. AIP Conference Proceedings, 2006, 873(1): 312-318.
    [15] BARKE S. Inter-spacecraft frequency distribution for future gravitational wave observatories[D]. Hannover: Leibniz University, 2015.
    [16] BARKE S, TRÖBS M, SHEARD B, et al. EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA[J]. Applied Physics B, 2010, 98(1): 33-39. doi: 10.1007/s00340-009-3682-x
    [17] ESTEBAN J J, GARCÍA A F, BARKE S, et al. Experimental demonstration of weak-light laser ranging and data communication for LISA[J]. Optics Express, 2011, 19(17): 15937-15946. doi: 10.1364/OE.19.015937
    [18] WAND V, GUZMÁN F, HEINZEL G, et al. LISA phasemeter development[J]. AIP Conference Proceedings, 2006, 873(1): 689-696.
    [19] GERBERDING O. Phase readout for satellite interferometry[D]. Hannover: Gottfried Wilhelm Leibniz Universität Hannover, 2014.
    [20] GERBERDING O, DIEKMANN C, KULLMANN J, et al. Readout for intersatellite laser interferometry: measuring low frequency phase fluctuations of high-frequency signals with microradian precision[J]. Review of Scientific Instruments, 2015, 86(7): 074501. doi: 10.1063/1.4927071
    [21] LIANG Y R. Note: a new method for directly reducing the sampling jitter noise of the digital phasemeter[J]. Review of Scientific Instruments, 2018, 89(3): 036106. doi: 10.1063/1.5011654
    [22] DE VINE G, WARE B, MCKENZIE K, et al. Experimental demonstration of time-delay interferometry for the laser interferometer space antenna[J]. Physical Review Letters, 2010, 104(21): 211103. doi: 10.1103/PhysRevLett.104.211103
    [23] 江强, 董鹏, 刘河山, 等. 太极计划时钟噪声传递的地面原理验证[J]. 中国光学(中英文),2023,16(6):1394-1403. doi: 10.37188/CO.2023-0012

    JIANG Q, DONG P, LIU H SH, et al. Ground-based principle verification of clock noise transfer for the Taiji program[J]. Chinese Optics, 2023, 16(6): 1394-1403. doi: 10.37188/CO.2023-0012
    [24] ZENG H Y, YAN H, XIE S Y, et al. Experimental demonstration of weak-light inter-spacecraft clock jitter readout for TianQin[J]. Optics Express, 2023, 31(21): 34648-34666. doi: 10.1364/OE.503164
    [25] TANG A, SUMNER T J. Removing the trend of drift induced from acceleration noise for LISA[J]. arXiv: 1202.2976, 2012.
    [26] COLPI M, DANZMANN K, HEWITSON M, et al. LISA definition study report[J]. arXiv: 2402.07571, 2024.
    [27] JU B W, YUN P, HAO Q, et al. A low phase and amplitude noise microwave source for vapor cell atomic clocks[J]. Review of Scientific Instruments, 2022, 93(10): 104709. doi: 10.1063/5.0096589
    [28] LI W B, HAO Q, DU Y B, et al. Demonstration of a sub-sampling phase lock loop based microwave source for reducing dick effect in atomic clocks[J]. Chinese Physics Letters, 2019, 36(7): 070601. doi: 10.1088/0256-307X/36/7/070601
    [29] LI X D, YUN P, LI Q L, et al. A low phase noise microwave source for high‐performance CPT Rb atomic clock[J]. Electronics Letters, 2021, 57(17): 659-661. doi: 10.1049/ell2.12222
    [30] 温智强, 云恩学, 孙思宇, 等. 微波功率锁定的高性能CPT原子钟频综[J]. 计量学报,2025,46(2):267-273.

    WEN ZH Q, YUN E X, SUN S Y, et al. A power stabilized low noise frequency synthesizer for CPT atomic clocks[J]. Acta Metrologica Sinica, 2025, 46(2): 267-273. (in Chinese).
    [31] 赖寒昱, 李光灿, 杜勇. 基于ADS仿真的梳状谱发生器的设计与实现[J]. 电子科技,2014,27(7):84-86. doi: 10.3969/j.issn.1007-7820.2014.07.023

    LAI H Y, LI G C, DU Y. Design and realization of a comb generator based on the simulation of ADS[J]. Electronic Science and Technology, 2014, 27(7): 84-86. (in Chinese). doi: 10.3969/j.issn.1007-7820.2014.07.023
    [32] RUBIOLA E, VERNOTTE F. The companion of enrico’s chart for phase noise and two-sample variances[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(7): 2996-3025. doi: 10.1109/TMTT.2023.3238267
    [33] LIU H SH, LUO Z R, JIN G. The development of phasemeter for Taiji space gravitational wave detection[J]. Microgravity Science and Technology, 2018, 30(6): 775-781. doi: 10.1007/s12217-018-9625-6
    [34] LUO Z R, YU T, LIU H SH, et al. The phasemeter of Taiji-1 experimental satellite[J]. International Journal of Modern Physics A, 2021, 36(11n12): 2140005. doi: 10.1142/S0217751X21400054
    [35] 张强涛, 刘河山, 罗子人. 面向空间激光干涉的多通道相位测量系统[J]. 中国光学(中英文),2023,16(5):1089-1099. doi: 10.37188/CO.2022-0258

    ZHANG Q T, LIU H SH, LUO Z R. Multi-channel phase measurement system for the space laser interferometry[J]. Chinese Optics, 2023, 16(5): 1089-1099. doi: 10.37188/CO.2022-0258
    [36] 薛正辉, 杨仕明, 李伟明, 等. 微波固态电路[M]. 北京: 北京理工大学出版社, 2004.

    XUE ZH H, YANG SH M, LI W M, et al. Microwave Solid State Circuit[M]. Beijing: Beijing Institute of Technology Press, 2004.
    [37] IEEE. IEEE Std 1139-2022 IEEE standard definitions of physical quantities for fundamental frequency and time metrology--random instabilities[S]. New York: IEEE, 2022: 1-60.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  24
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-04-10

目录

    /

    返回文章
    返回