-
摘要:
采用热聚法结合室温溶液法制备了Bi2O3/Bi2S3异质结复合材料,并对其微观形貌、晶体结构和元素组成等进行了表征。结果表明Bi2O3/Bi2S3异质结复合材料整体呈现为块状形貌且有孔洞存在,表面相对粗糙。基于所制备的Bi2O3/Bi2S3异质结复合材料,构筑了光电探测器。在无外加偏压条件下,Bi2O3/Bi2S3探测器暴露在紫外光下的最大光电流(0.32 μA)和响应速度(65.65/80.56 ms)相比Bi2O3探测器均得到了明显增强。此外,该器件可将Bi2O3的探测波段从紫外拓宽至可见光,并且在可见光波段也具有快速稳定的自驱动探测能力。这主要是由于Bi2O3和窄带隙Bi2S3半导体成功耦合,形成了II型能带结构的异质结复合材料。值得注意的是,连续开/关蓝光100次的光电探测性能测试结果表明,Bi2O3/Bi2S3探测器具有良好的循环稳定性。
Abstract:The Bi2O3/Bi2S3 heterojunction composite was prepared by thermal polymerization combined with room temperature solution method, and its micromorphology, crystal structure and elemental composition were characterized. The results demonstrate that the Bi2O3/Bi2S3 heterojunction composite exhibits a bulk morphology, accompanied by the presence of pores and a relatively rough surface. Based on the Bi2O3/Bi2S3 heterojunction composite, the photodetector was fabricated and its photodetection performance was measured under zero bias voltage. When exposed to ultraviolet (UV) light, the maximum photocurrent (0.32 μA) and response speed (65.65/80.56 ms) of the Bi2O3/Bi2S3 photodetector are significantly enhanced compared to those of the Bi2O3 photodetector. In addition, the device exhibits a wide photodetection band from the ultraviolet (UV) to the visible (Vis) spectrum, as well as fast and stable self-driven photodetection capability. This is mainly attributed the successful coupling of Bi2O3 and Bi2S3 with a narrow band gap, resulting in the formation of a heterojunction composite that exhibits a type II band structure. It is noteworthy that the photodetection performance of the device was measured by continuously alternating between blue light on and off for 100 times. This indicates that the Bi2O3/Bi2S3 photodetector exhibits excellent cycle stability.
-
Key words:
- Bi2O3 /
- Bi2S3 /
- photodetector /
- heterojunction
-
图 5 Bi2O3纳米块和Bi2O3/Bi2S3复合材料光电探测器在紫外光照射下的光响应特性(a)。(b)Bi2O3/Bi2S3复合材料和Bi2O3纳米块(c)光电探测器的响应速度
Figure 5. Photoresponse characteristics of Bi2O3 nanoblocks and Bi2O3/Bi2S3 composite photodetectors under UV light illumination (a). (b) Response speed of Bi2O3 nanoblocks and Bi2O3/Bi2S3 composite (c) Response speed of photodetectors
图 6 Bi2O3纳米块和Bi2O3/Bi2S3复合材料光电探测器在蓝光(a)、绿光(c)和红光(e)照射下的光响应特性。Bi2O3/Bi2S3复合材料光电探测器在蓝光(b)、绿光(d)和红光(f)照射下的响应速度。
Figure 6. Photoresponse characteristics of Bi2O3 nanoblocks and Bi2O3/Bi2S3 composite photodetectors under blue (a), green (c) and red (e) light illumination. Response speed of the Bi2O3/Bi2S3 composite photodetector under blue (b), green (d) and red (f) light illumination.
-
[1] 裴梓伊, 胡朋兵, 潘孙强, 等. TDLAS气体激光遥测高灵敏光电探测电路设计[J]. 中国光学(中英文),2024,17(1):198-208. doi: 10.37188/CO.2023-0107PEI Z Y, HU P B, PAN S Q, et al. Design of a highly sensitive photoelectric detection circuit for TDLAS gas laser telemetry[J]. Chinese Optics, 2024, 17(1): 198-208. (in Chinese). doi: 10.37188/CO.2023-0107 [2] 李力, 耿会娟, 张天昊, 等. 基于PbS量子点光电探测器的脉搏检测系统研究[J]. 中国光学(中英文),2024,17(5):1236-1243. doi: 10.37188/CO.2024-0018LI L, GENG H J, ZHANG T H, et al. Research on pulse detection system based on PbS quantum dot photodetector[J]. Chinese Optics, 2024, 17(5): 1236-1243. (in Chinese). doi: 10.37188/CO.2024-0018 [3] ZHENG Q, XU J P, LI J, et al. Regulation of Bi2O3 phase structure improves the self-powered UV-blue dual-band photoresponse of Bi2O3/TiO2 photodetectors and the imaging application[J]. Surfaces and Interfaces, 2024, 44: 103758. doi: 10.1016/j.surfin.2023.103758 [4] LIU L, YANG CH, PATANÈ A, et al. High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN[J]. Nanoscale, 2017, 9(24): 8142-8148. doi: 10.1039/C7NR01290J [5] 田慧军, 刘巧莉, 岳恒, 等. 高比探测率和高速石墨烯/n-GaAs复合结构的光电探测器[J]. 中国光学,2021,14(1):206-212. doi: 10.37188/CO.2020-0153TIAN H J, LIU Q L, YUE H, et al. Hybrid graphene/n-GaAs photodiodes with high specific detectivity and high speed[J]. Chinese Optics, 2021, 14(1): 206-212. (in Chinese). doi: 10.37188/CO.2020-0153 [6] 段雨晗, 蒋大勇, 赵曼. 高增益ZnO肖特基紫外光电探测器光响应特性[J]. 发光学报,2023,44(10):1816-1823. doi: 10.37188/CJL.20230169DUAN Y H, JIANG D Y, ZHAO M. Responsivity characteristics of ZnO schottky ultraviolet photodetectors with high gain[J]. Chinese Journal of Luminescence, 2023, 44(10): 1816-1823. (in Chinese). doi: 10.37188/CJL.20230169 [7] LI R J, TANG L B, ZHAO Q, et al. Facile synthesis of ZnS quantum dots at room temperature for ultra-violet photodetector applications[J]. Chemical Physics Letters, 2020, 742: 137127. doi: 10.1016/j.cplett.2020.137127 [8] VILA M, DÍAZ-GUERRA C, PIQUERAS J. α-Bi2O3 microcrystals and microrods: thermal synthesis, structural and luminescence properties[J]. Journal of Alloys and Compounds, 2013, 548: 188-193. doi: 10.1016/j.jallcom.2012.08.133 [9] PARK Y W, JUNG H J, YOON S G. Bi2O3 nanowire growth from high-density Bi nanowires grown at a low temperature using aluminum-bismuth co-deposited films[J]. Sensors and Actuators B: Chemical, 2011, 156(2): 709-714. doi: 10.1016/j.snb.2011.02.023 [10] WU J, WANG F K, LI H B, et al. Epitaxial growth of 2D ultrathin metastable γ-Bi2O3 flakes for high performance ultraviolet photodetection[J]. Small, 2022, 18(3): 2104244. doi: 10.1002/smll.202104244 [11] ZHANG W W, GAO SH M, CHEN D H. Preparation of Ce3+ doped Bi2O3 hollow needle-shape with enhanced visible-light photocatalytic activity[J]. Journal of Rare Earths, 2019, 37(7): 726-731. doi: 10.1016/j.jre.2018.12.007 [12] PRAKASH M, KAVITHA H P, ARULMURUGAN S, et al. Ag-doped Bi2O3 nanoparticles: synthesis, characterization, antibacterial, larvicidal, and photocatalytic properties[J]. Journal of Sol-Gel Science and Technology, 2024, 110(3): 807-818. doi: 10.1007/s10971-024-06400-1 [13] REDDY N L, EMIN S, VALANT M, et al. Nanostructured Bi2O3@TiO2 photocatalyst for enhanced hydrogen production[J]. International Journal of Hydrogen Energy, 2017, 42(10): 6627-6636. doi: 10.1016/j.ijhydene.2016.12.154 [14] YI H X, MA CH R, WANG W, et al. Quantum tailoring for polarization-discriminating Bi2S3 nanowire photodetectors and their multiplexing optical communication and imaging applications[J]. Materials Horizons, 2023, 10(9): 3369-3381. doi: 10.1039/D3MH00733B [15] CHEN G H, YU Y Q, ZHENG K, et al. Fabrication of ultrathin Bi2S3 nanosheets for high-performance, flexible, visible-NIR photodetectors[J]. Small, 2015, 11(24): 2848-2855. doi: 10.1002/smll.201403508 [16] WANG F X, YE C, MO S, et al. Enhanced photoelectrochemical sensing based on novel synthesized Bi2S3@Bi2O3 nanosheet heterostructure for ultrasensitive determination of L-cysteine[J]. Analytical and Bioanalytical Chemistry, 2019, 411(14): 3059-3068. doi: 10.1007/s00216-019-01765-7 [17] CHANG F, PENG SH J, YAN W J, et al. A novel and facile procedure to decorate Bi2O3 with Bi2S3 nanocrystals: composites synthesis, analyses, and photocatalytic performance assessment[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610: 125640. doi: 10.1016/j.colsurfa.2020.125640 [18] KIM J H, LIM T, PARK J Y, et al. Understanding and improving photoelectrochemical performance of Bi2O3/Bi2S3 composite[J]. New Journal of Chemistry, 2019, 43(30): 11893-11902. doi: 10.1039/C9NJ02913C [19] SONG J J, ZHU G SH, XU H R, et al. Preparation and properties of high-density Bi2O3 ceramics by cold sintering[J]. Ceramics International, 2020, 46(9): 13848-13853. doi: 10.1016/j.ceramint.2020.02.177 [20] WANG J L, LI L J, YU H S, et al. Binary-ternary Bi2S3-AgBiS2 rod-to-rod transformation via anisotropic partial cation exchange reaction[J]. Inorganic Chemistry, 2019, 58(19): 12998-13006. doi: 10.1021/acs.inorgchem.9b01917 [21] GUAN ZH P, LI Q Y, SHEN B, et al. Fabrication of Co3O4 and Au co-modified BiOBr flower-like microspheres with high photocatalytic efficiency for sulfadiazine degradation[J]. Separation and Purification Technology, 2020, 234: 116100. doi: 10.1016/j.seppur.2019.116100 [22] YI H X, MA CH R, WANG W, et al. Quantum tailoring for polarization-discriminating Bi2S3 nanowire photodetectors and their multiplexing optical communication and imaging applications[J]. Materials Horizons, 2023, 10(9): 3369-3381. (查阅网上资料, 本条文献信息与第14条重复, 请确认) . [23] FAROOQ S, FEENEY T, MENDES J O, et al. High gain solution-processed carbon-free BiSI chalcohalide thin film photodetectors[J]. Advanced Functional Materials, 2021, 31(52): 2104788. doi: 10.1002/adfm.202104788 [24] CHANG F, PENG SH J, YAN W J, et al. A novel and facile procedure to decorate Bi2O3 with Bi2S3 nanocrystals: composites synthesis, analyses, and photocatalytic performance assessment[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610: 125640. (查阅网上资料, 本条文献信息与第17条重复, 请确认) . -