留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光外差干涉皮米级平动测量技术研究

徐欣 林湫童 穆衡霖 李子墨 李岩 谈宜东

徐欣, 林湫童, 穆衡霖, 李子墨, 李岩, 谈宜东. 激光外差干涉皮米级平动测量技术研究[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0192
引用本文: 徐欣, 林湫童, 穆衡霖, 李子墨, 李岩, 谈宜东. 激光外差干涉皮米级平动测量技术研究[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0192
XU Xin, LIN Qiu-tong, MU Heng-lin, LI Zi-mo, LI Yan, TAN Yi-dong. Laser heterodyne interferometry for picometer-level displacement measurement[J]. Chinese Optics. doi: 10.37188/CO.2024-0192
Citation: XU Xin, LIN Qiu-tong, MU Heng-lin, LI Zi-mo, LI Yan, TAN Yi-dong. Laser heterodyne interferometry for picometer-level displacement measurement[J]. Chinese Optics. doi: 10.37188/CO.2024-0192

激光外差干涉皮米级平动测量技术研究

cstr: 32171.14.CO.2024-0192
基金项目: 国家重点研发计划(No. 2022YFC2204504,No. 2020YFC2200204);国家资助博士后研究人员计划(No. GZC20240802)
详细信息
    作者简介:

    徐 欣(1997—),男,江苏盐城人,博士后,助理研究员,主要从事激光干涉测量方面的研究。E-mail:xuxin.2019@tsinghua.org.cn

    谈宜东(1980—),男,江苏宜兴人,博士,教授,主要从事激光精密测量方面的研究。E-mail:tanyd@tsinghua.edu.cn

  • 中图分类号: TH741;O43

Laser heterodyne interferometry for picometer-level displacement measurement

Funds: Supported by National Key R & D Program of China (No. 2022YFC2204504, No. 2020YFC2200204); Postdoctoral Fellowship Program of CPSF (No. GZC20240802)
More Information
  • 摘要:

    针对空间引力波探测中星内检验质量的高灵敏测量需求,构建了激光外差干涉测量地面模拟系统,开展皮米级平动测量技术研究。首先,开展真空环境下激光外差干涉测量系统的平动灵敏度测试。接着,根据灵敏度结果开展激光外差干涉测量系统噪声溯源研究,分析多种噪声源作用机理、探索主导噪声源消减方案。最后,在噪声溯源分析的基础上完成激光外差干涉测量系统优化。测试结果表明平动测量灵敏度优于1 pm/Hz1/2@30 mHz−1 Hz。该研究有望为空间引力波探测中皮米级激光干涉测量技术的进一步发展提供可靠的噪声溯源地面测试平台。

     

  • 图 1  激光外差干涉测量光路示意图

    Figure 1.  Schematic diagram of laser heterodyne interferometry optical path

    图 2  激光外差干涉测量实物系统

    Figure 2.  Physical system of laser heterodyne interferometry

    图 3  DBHI平动灵敏度初步测试结果。优化前:大气环境下普通光学平台;优化后:真空环境下隔振光学平台

    Figure 3.  Preliminary test results of DBHI translational sensitivity. Pre-optimization: ordinary optical platform under atmospheric conditions; post-optimization: vibration-isolated optical platform under vacuum conditions

    图 4  移频驱动中心频率信号频谱(200 MHz & 201 MHz)

    Figure 4.  Frequency spectrum of the frequency-shifted central frequency signal (200 MHz & 201 MHz)

    图 5  移频驱动杂波边带与主频信号混频产生同频干扰信号[14]

    Figure 5.  Interference signals generated by mixing frequency-shifted spurious sidebands with the main frequency signal[14]

    图 6  平动灵敏度结果(移频驱动杂波噪声优化前后)

    Figure 6.  Translational sensitivity results (before and after frequency-shifted spurious noise optimization)

    图 7  15小时平动零漂和核心光路部分温度测量时域漂移

    Figure 7.  Translational zero drift and temporal drift of temperature measurements in the core optical path over 15 hours

    图 8  原始平动数据以及去线性漂移后平动数据的灵敏度曲线(包含温度噪声等效平动测量灵敏度)

    Figure 8.  Sensitivity curves for the original translational data and the translational data after linear drift removal (including temperature noise-equivalent translational measurement sensitivity)

    图 9  稳频前后平动测量灵敏度对比以及激光频率噪声等效平动灵敏度

    Figure 9.  Comparison of translational measurement sensitivity before and after frequency stabilization and laser frequency noise-equivalent translational sensitivity

    图 10  偏振优化前后DBHI干涉系统平动灵敏度测量结果

    Figure 10.  Comparison of DBHI translational measurement sensitivity before and after polarization optimization

    图 11  相位解调模块灵敏度测试结果

    Figure 11.  Sensitivity test results of the phase demodulation module

    图 12  杂散光产生干扰拍频信号。(a)PMHI干涉光路中的偏振漏光混叠;(b)DBHI干涉光路中的寄生反射

    Figure 12.  Stray light generates interference beat signals. (a) Polarization leakage in PMHI interferometric path (b) parasitic reflections in DBHI interferometric path

    图 13  激光指向漂移噪声等效平动读出测量灵敏度

    Figure 13.  Sensitivity of equivalent translational readout measurement to laser pointing drift noise

    图 14  激光强度噪声耦合示意图。(a)无干扰同频干涉信号;(b)有干扰;(c)有干扰且干扰信号振幅和相位改变

    Figure 14.  Schematic diagram of laser intensity noise coupling. (a) Interference signal without disturbance (b) with disturbance (c) with disturbance and changes in the amplitude and phase of the disturbance signal

    图 15  DBHI干涉系统部分噪声等效平动灵敏度估计

    Figure 15.  Estimation of equivalent translational sensitivity of partial noise in the DBHI interferometric system

    图 16  激光外差干涉平动测量系统灵敏度测试结果。(a)DBHI (b)PMHI

    Figure 16.  Sensitivity test results of the laser heterodyne interferometric translational measurement system. (a) DBHI (b) PMHI

  • [1] K Danzmann for the LISA Study Team. LISA-an ESA cornerstone mission for a gravitational wave observatory[J]. Classical and Quantum Gravity, 1997, 14(6): 1399-1404. doi: 10.1088/0264-9381/14/6/002
    [2] LUO Z R, GUO Z K, JIN G, et al. A brief analysis to Taiji: science and technology[J]. Results in Physics, 2020, 16: 102918. doi: 10.1016/j.rinp.2019.102918
    [3] WU Y L. Space gravitational wave detection in China[C]. Presentation on 1st eLISA Consortium Meeting, APC-Paris, 2012.
    [4] 罗俊, 艾凌皓, 艾艳丽, 等. 天琴计划简介[J]. 中山大学学报(自然科学版),2021,60(1-2):1-19.

    LUO J, AI L H, AI Y L, et al. A brief introduction to the TianQin project[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(1-2): 1-19. (in Chinese).
    [5] HECHLER F, FOLKNER W M. Mission analysis for the Laser Interferometer Space Antenna (LISA) mission[J]. Advances in Space Research, 2003, 32(7): 1277-1282. doi: 10.1016/S0273-1177(03)90332-2
    [6] HU W R, WU Y L. The Taiji program in space for gravitational wave physics and the nature of gravity[J]. National Science Review, 2017, 4(5): 685-686. doi: 10.1093/nsr/nwx116
    [7] LUO J, CHEN L S, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010. doi: 10.1088/0264-9381/33/3/035010
    [8] AMARO-SEOANE P, AUDLEY H, BABAK S, et al. Laser interferometer space antenna[J]. arXiv: 1702.00786, 2017.
    [9] ARMANO M, AUDLEY H, BAIRD J, et al. Sensor noise in LISA pathfinder: in-flight performance of the optical test mass readout[J]. Physical Review Letters, 2021, 126(13): 131103. doi: 10.1103/PhysRevLett.126.131103
    [10] ARMANO M, AUDLEY H, BAIRD J, et al. Sensor noise in LISA Pathfinder: an extensive in-flight review of the angular and longitudinal interferometric measurement system[J]. Physical Review D, 2022, 106(8): 082001. doi: 10.1103/PhysRevD.106.082001
    [11] LIU H SH, LUO Z R, SHA W, et al. In-orbit performance of the laser interferometer of Taiji-1 experimental satellite[J]. International Journal of Modern Physics A, 2021, 36(11n12): 2140004. doi: 10.1142/S0217751X21400042
    [12] LUO J, BAI Y ZH, CAI L, et al. The first round result from the TianQin-1 satellite[J]. Classical and Quantum Gravity, 2020, 37(18): 185013. doi: 10.1088/1361-6382/aba66a
    [13] XU X, LIU H SH, TAN Y D. Verification of laser heterodyne interferometric bench for Chinese spaceborne gravitational wave detection missions[J]. Research, 2024, 7: 0302. doi: 10.34133/research.0302
    [14] GARCÍA MARÍN A. Minimisation of optical pathlength noise for the detection of gravitational waves with the spaceborne laser interferometer LISA and LISA Pathfinder[D]. Hannover: Albert Einstein Institute & University of Hannover, 2007.
    [15] DEHNE M. Construction and noise behaviour of ultra-stable optical systems for space interferometers[D]. Hannover: Gottfried Wilhelm Leibniz Universität Hannover, 2012.
    [16] 颜浩. 基于激光干涉的高精度多自由度光学传感研究[D]. 武汉: 华中科技大学, 2019.

    YAN H. Study on ultra-precision multi-degree-of-freedom optical measurement base on laser interferometry[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese).
    [17] FULDA P, DEROSA R T, DEMARCO E, et al. Multi-axis heterodyne interferometry at MHz frequencies: a short-arm measurement demonstration for LISA with off-the-shelf hardware[J]. Applied Optics, 2019, 58(23): 6346-6356. doi: 10.1364/AO.58.006346
    [18] SASSO C P, MANA G, MOTTINI S. The LISA interferometer: Impact of stray light on the phase of the heterodyne signal[J]. Classical and Quantum Gravity, 2019, 36(7): 075015. doi: 10.1088/1361-6382/ab0a15
    [19] DEHNE M, TRÖBS M, HEINZEL G, et al. Verification of polarising optics for the LISA optical bench[J]. Optics Express, 2012, 20(25): 27273-27287. doi: 10.1364/OE.20.027273
    [20] WITTCHEN A, LPF Collaboration. Coupling of relative intensity noise and pathlength noise to the length measurement in the optical metrology system of LISA Pathfinder[J]. Journal of Physics: Conference Series, 2017, 840: 012003. doi: 10.1088/1742-6596/840/1/012003
    [21] WISSEL L, WITTCHEN A, SCHWARZE T S, et al. Relative-intensity-noise coupling in heterodyne interferometers[J]. Physical Review Applied, 2022, 17(2): 024025. doi: 10.1103/PhysRevApplied.17.024025
  • 加载中
图(16)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  29
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-18
  • 录用日期:  2024-12-13
  • 网络出版日期:  2025-01-22

目录

    /

    返回文章
    返回