留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MHz深度频率调制激光干涉的相位测量技术

范习谦 刘河山 罗子人 张子恒

范习谦, 刘河山, 罗子人, 张子恒. 基于MHz深度频率调制激光干涉的相位测量技术[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0157
引用本文: 范习谦, 刘河山, 罗子人, 张子恒. 基于MHz深度频率调制激光干涉的相位测量技术[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0157
FAN Xi-qian, LIU He-shan, LUO Zi-ren, ZHANG Zi-heng. Phase measurement technique based on MHz depth frequency modulated laser interferometry[J]. Chinese Optics. doi: 10.37188/CO.2024-0157
Citation: FAN Xi-qian, LIU He-shan, LUO Zi-ren, ZHANG Zi-heng. Phase measurement technique based on MHz depth frequency modulated laser interferometry[J]. Chinese Optics. doi: 10.37188/CO.2024-0157

基于MHz深度频率调制激光干涉的相位测量技术

cstr: 32171.14.CO.2024-0157
基金项目: 国家重点研发计划资助:“引力波探测”重点专项(No. 2021YFC2202902,No. 2023YFC2206200)
详细信息
    作者简介:

    范习谦(2000—),男,湖南邵阳人,硕士在读,现就读于国科大杭州高等研究院,主要从事数字信号处理、高精度相位测量、激光干涉技术等方面的研究。E-mail:fanxiqian22@mails.ucas.ac.cn

    刘河山(1988—),男,安徽阜阳人,博士,副研究员,2015年于中国科学院大学获得博士学位,研究领域涉及激光干涉测距、高精度相位测量、精密指向控制、激光锁相等。E-mail:liuheshan@imech.ac.cn

    罗子人(1980—),男,湖南长沙人,博士,研究员,2010年于中国科学院数学与系统科学研究院获得理学博士学位,现为中国科学院力学研究所研究员。太极计划首席科学家助理,主要从事引力波探测的空间激光干涉测距技术的理论分析和方案设计方面的研究。E-mail:luoziren@imech.ac.cn

    张子恒(1999—),男,重庆人,硕士在读,现就读于国科大杭州高等研究院,主要从事数字信号处理、激光通信测距、相位计功能集成等方面的研究。E-mail:zhangziheng22@mails.ucas.ac.cn

  • 中图分类号: O439

Phase measurement technique based on MHz depth frequency modulated laser interferometry

Funds: Supported by National Key Research and Development Program of China (No. 2021YFC2202902, No. 2023YFC2206200).
More Information
  • 摘要:

    深度频率调制干涉技术(DFM)是实现空间引力波探测激光干涉测量系统简化的有效方案。当前DFM干涉技术普遍使用kHz级调制,导致激光功率噪声耦合进入系统,增加本底噪声,从而难以满足高精度空间测量的要求。本文提出将DFM调制频率提升至MHz量级以减少激光功率噪声影响,通过深入分析DFM技术原理,采用贝塞尔函数展开、正交解调和推广J1···J4方法设计了DFM干涉相位信号提取方法。基于MHz级信号处理需求,完成了相位测量系统的软硬件构建,并对系统在多种工况下的性能进行测试与评估。测试结果表明:相位测量系统的具有良好的线性度和准确度,且在不同工况下,2 mHz ~ 1 Hz频段内的相位噪声均优于 2π µrad/√Hz,能够满足空间引力波探测的相位测量需求。

     

  • 图 1  DFM干涉光路原理图

    Figure 1.  Schematic of the DFM interferometric optical path

    图 2  典型DFM信号功率幅度谱密度图

    Figure 2.  Power spectral density plot of a typical DFM signal

    图 3  两种方法的调制相位计算结果比较

    Figure 3.  Comparison of the results modulation phase calculation results using two methods

    图 4  DFM相位计系统框图

    Figure 4.  Block diagram of the DFM phasemeter system

    图 5  CIC滤波器幅频响应及混频信号频谱。(a)160倍抽取;(b)160倍抽取;(c)50倍抽取

    Figure 5.  CIC filter amplitude-frequency response and mixed signal spectrum. (a) 160-fold extraction; (b) 160-fold extraction; (c) 50-fold extraction

    图 6  相位计测试硬件环境。(a)信号发生器(上)与可编程电源(下); (b)16通道相位计

    Figure 6.  Phasemeter test hardware environment. (a) signal generator (top) and programmable power supply (bottom); (b) 16-channel phasometer;

    图 7  静态相位线性度测试结果

    Figure 7.  Results of static phase linearity testing

    图 8  动态相位线性度测试结果

    Figure 8.  Results of dynamic phase linearity testing

    图 9  不同幅值下读出相位噪声的幅度谱密度

    Figure 9.  ASD of the readout phase noise at different amplitude levels

    图 10  动态幅值、等效调角深度下读出相位噪声的幅度谱密度

    Figure 10.  ASD of readout phase noise under dynamic amplitude and equivalent tuning angle depths

    表  1  动态测试下拟合曲线评价参数

    Table  1.   Evaluation parameters of fitted curves in dynamic test

    相位变化频率(Hz)$ f(x) = {p_1}*t + {p_2} $SSER-squareAdjusted R-squareRMSE
    $ {p_1} $$ {p_2} $
    0.013.6001-0.089646.55771.00001.00000.0682
    0.027.20020.00456.73901.00001.00000.0367
    0.0414.40010.01093.28611.00001.00000.0363
    0.0828.8006-0.07271.66011.00001.00000.0364
    下载: 导出CSV
  • [1] 徐欣, 谈宜东, 穆衡霖, 等. 空间引力波探测中的激光干涉多自由度测量技术[J]. 激光与光电子学进展,2023,60(3):0312006.

    XU X, TAN Y D, MU H L, et al. Laser interferometric multi-degree-of-freedom measurement technology in space gravitational-wave detection[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312006. (in Chinese).
    [2] WATCHI J, COOPER S, DING B L, et al. Contributed review: a review of compact interferometers[J]. Review of Scientific Instruments, 2018, 89(12): 121501. doi: 10.1063/1.5052042
    [3] SUTTON A J, GERBERDING O, HEINZEL G, et al. Digitally enhanced homodyne interferometry[J]. Optics Express, 2012, 20(20): 22195-22207. doi: 10.1364/OE.20.022195
    [4] SHADDOCK D A. Digitally enhanced heterodyne interferometry[J]. Optics Letters, 2007, 32(22): 3355-3357. doi: 10.1364/OL.32.003355
    [5] VINE G, RABELING D S, SLAGMOLEN B J J, et al. Picometer level displacement metrology with digitally enhanced heterodyne interferometry[J]. Optics Express, 2009, 17(2): 828-837. doi: 10.1364/OE.17.000828
    [6] LIU H SH, WANG J, GAO R H, et al. Constant amplitude modulation heterodyne interferometry[J]. Applied Optics, 2022, 61(28): 8493-8499. doi: 10.1364/AO.456944
    [7] LAI L X, DONG P, LIU H SH, et al. Experimental demonstration of constant amplitude modulation heterodyne interferometry[J]. Optics Letters, 2024, 49(11): 2873-2876. doi: 10.1364/OL.524447
    [8] HEINZEL G, CERVANTES F G, MARÍN A F G, et al. Deep phase modulation interferometry[J]. Optics Express, 2010, 18(18): 19076-19086. doi: 10.1364/OE.18.019076
    [9] SCHWARZE T S, GERBERDING O, CERVANTES F G, et al. Advanced phasemeter for deep phase modulation interferometry[J]. Optics Express, 2014, 22(15): 18214-18223. doi: 10.1364/OE.22.018214
    [10] TERÁN M, MARTÍN V, GESA L, et al. Towards a FPGA-controlled deep phase modulation interferometer[J]. Journal of Physics: Conference Series, 2015, 610: 012042. doi: 10.1088/1742-6596/610/1/012042
    [11] GERBERDING O. Deep frequency modulation interferometry[J]. Optics Express, 2015, 23(11): 14753-14762. doi: 10.1364/OE.23.014753
    [12] SCHWARZE T S. Phase extraction for laser interferometry in space: phase readout schemes and optical testing[D]. Hannover: Leibniz University, 2018.
    [13] ISLEIF K S. Laser interferometry for LISA and satellite geodesy missions[D]. Hannover: Leibniz Universität Hannover, 2018.
    [14] ISLEIF K S, GERBERDING O, SCHWARZE T S, et al. Experimental demonstration of deep frequency modulation interferometry[J]. Optics Express, 2016, 24(2): 1676-1684. doi: 10.1364/OE.24.001676
    [15] ISLEIF K S, HEINZEL G, MEHMET M, et al. Compact multifringe interferometry with subpicometer precision[J]. Physical Review Applied, 2019, 12(3): 034025. doi: 10.1103/PhysRevApplied.12.034025
    [16] WISSEL L, WITTCHEN A, SCHWARZE T S, et al. Relative-intensity-noise coupling in heterodyne interferometers[J]. Physical Review Applied, 2022, 17(2): 024025. doi: 10.1103/PhysRevApplied.17.024025
    [17] GERBERDING O, ISLEIF K S. Ghost beam suppression in deep frequency modulation interferometry for compact on-axis optical heads[J]. Sensors, 2021, 21(5): 1708. doi: 10.3390/s21051708
    [18] SMETANA J, WALTERS R, BAUCHINGER S, et al. Compact Michelson interferometers with subpicometer sensitivity[J]. Physical Review Applied, 2022, 18(3): 034040. doi: 10.1103/PhysRevApplied.18.034040
    [19] SUDARSHANAM V S, SRINIVASAN K. Linear readout of dynamic phase change in a fiber-optic homodyne interferometer[J]. Optics Letters, 1989, 14(2): 140-142. doi: 10.1364/OL.14.000140
    [20] JIN W, ZHANG L M, UTTAMCHANDANI D, et al. Modified J1J4 method for linear readout of dynamic phase changes in a fiber-optic homodyne interferometer[J]. Applied Optics, 1991, 30(31): 4496-4499. doi: 10.1364/AO.30.004496
    [21] SUDARSHANAM V S, CLAUS R O. Generic J1J4 method of optical phase detection: accuracy and range enhancement[J]. Journal of Modern Optics, 1993, 40(3): 483-492. doi: 10.1080/09500349314550481
    [22] 张强涛, 刘河山, 罗子人. 面向空间激光干涉的多通道相位测量系统[J]. 中国光学 (中英文),2023,16(5):1089-1099. doi: 10.37188/CO.2022-0258

    ZHANG Q T, LIU H SH, LUO Z R. Multi-channel phase measurement system for the space laser interferometry[J]. Chinese Optics, 2023, 16(5): 1089-1099. (in Chinese). doi: 10.37188/CO.2022-0258
    [23] ZHANG Q T, LIU H SH, DONG P, et al. Multi-frequency signal acquisition and phase measurement in space gravitational wave detection[J]. Review of Scientific Instruments, 2024, 95(5): 054501. doi: 10.1063/5.0198104
    [24] 刘河山. 面向空间引力波探测的激光差分干涉相位计研究[D]. 北京: 中国科学院大学, 2015.

    LIU H SH. The research on phasemeter of heterodyne laser interferometry for the space gravitational wave detection[D]. Beijing: University of Chinese Academy of Sciences, 2015. (in Chinese) (查阅网上资料, 未找到本条文献英文信息, 请确认).
    [25] HEWITSON M, ARMANO M, BENEDETTI M, et al. Data analysis for the LISA technology package[J]. Classical and Quantum Gravity, 2009, 26(9): 094003. doi: 10.1088/0264-9381/26/9/094003
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  164
  • HTML全文浏览量:  28
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-04
  • 录用日期:  2024-10-28
  • 网络出版日期:  2025-01-22

目录

    /

    返回文章
    返回