留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应红外多波段联合光谱分析的高精度气体浓度反演研究

王冠程 赵百轩 郑凯丰 陈宇鹏 赵莹泽 秦余欣 王惟彪 刘国豪 盛开洋 吕金光 梁静秋

王冠程, 赵百轩, 郑凯丰, 陈宇鹏, 赵莹泽, 秦余欣, 王惟彪, 刘国豪, 盛开洋, 吕金光, 梁静秋. 基于自适应红外多波段联合光谱分析的高精度气体浓度反演研究[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0071
引用本文: 王冠程, 赵百轩, 郑凯丰, 陈宇鹏, 赵莹泽, 秦余欣, 王惟彪, 刘国豪, 盛开洋, 吕金光, 梁静秋. 基于自适应红外多波段联合光谱分析的高精度气体浓度反演研究[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0071
WANG Guan-cheng, ZHAO Bai-xuan, ZHENG Kai-feng, CHEN Yu-peng, ZHAO Ying-ze, QIN Yu-xin, WANG Wei-biao, LIU Guo-hao, SHENG Kai-yang, LV Jin-guang, LIANG Jing-qiu. Research on high-precision gas concentration inversion based on adaptive infrared multi-band joint spectral analysis[J]. Chinese Optics. doi: 10.37188/CO.2024-0071
Citation: WANG Guan-cheng, ZHAO Bai-xuan, ZHENG Kai-feng, CHEN Yu-peng, ZHAO Ying-ze, QIN Yu-xin, WANG Wei-biao, LIU Guo-hao, SHENG Kai-yang, LV Jin-guang, LIANG Jing-qiu. Research on high-precision gas concentration inversion based on adaptive infrared multi-band joint spectral analysis[J]. Chinese Optics. doi: 10.37188/CO.2024-0071

基于自适应红外多波段联合光谱分析的高精度气体浓度反演研究

doi: 10.37188/CO.2024-0071
基金项目: 吉林省科技发展计划(No. 20230201049GX,No. 20230508137RC,No. 20230508141RC,No. 20240602066RC);国家自然科学基金(No. 61627819,No. 62305339,No. 61727818,No. 61805239);中国科学院青年创新促进会人才基金(No. 2018254);国家重点研发计划(No. 2022YFB3604702)
详细信息
    作者简介:

    王冠程(1999—),男,吉林长春人,硕士研究生,2021年于长春理工大学获得学士学位,主要从事红外光谱分析方面的研究。E-mail:wangguancheng21@mails.ucas.ac.cn

    吕金光(1984—),男,吉林蛟河人,博士,副研究员,博士生导师,中国科学院青年创新促进会会员,2008 年于吉林大学获得学士学位,2013年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事相干光谱成像与光学信息处理方面的研究。E-mail:jinguanglv@163.com

    梁静秋(1962—),女,吉林长春人,博士,研究员,博士生导师,2003年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事微光机电系统及光通信、红外光谱技术及仪器、Micro LED芯片及应用等方面的研究。E-mail:liangjq@ciomp.ac.cn

  • 中图分类号: TP394.1;TH691.9

Research on high-precision gas concentration inversion based on adaptive infrared multi-band joint spectral analysis

Funds: Supported by Jilin Provincial Scientific and Technological Development Program (No. 20230201049GX, No. 20230508137RC, No. 20230508141RC, No. 20240602066RC); National Natural Science Foundation of China (No. 61627819, No. 62305339, No. 61727818, No. 61805239); Youth Innovation Promotion Association Foundation of the Chinese Academy of Sciences (No. 2018254); National Key R&D Program of China (No. 2022YFB3604702)
  • 摘要:
    目的 

    傅里叶变换光谱技术(FTS)是气体成分分析及浓度的精准测量的有效手段,但在分析过程中待测气体的饱和吸收与弱吸收使某些波段的透过率偏离稳定区间,导致光谱信噪比降低以及仪器的非线性响应,降低浓度反演精度。

    方法 

    本文提出一种自适应多波段联合浓度反演算法,结合透过率稳定区间与谱宽阈值自适应选择待测气体的有效波段;采用非线性最小二乘拟合方法对各有效波段进行浓度反演并进行残差分析,获得各有效波段的浓度反演结果及其权重,通过加权平均实现待测气体浓度的精确定量分析。

    结果 

    设计并进行了算法验证实验,结果表明,自适应多波段联合浓度反演算法的稳定系数达到了0.9976,相较于传统的单波段及多波段浓度反演算法,反演结果的均方根误差分别降低了64.44%、41.52%,平均相对误差分别降低了65.97%、46.72%,平均绝对误差分别降低了66.32%、47.74%,

    结论 

    反演精度与稳定性得到了明显提升。

     

  • 图 1  自适应多波段联合浓度反演算法流程图

    Figure 1.  Flow chart of adaptive multi-band joint concentration inversion algorithm

    图 2  实验原理图

    Figure 2.  Experimental schematic diagram

    图 3  实验装置图

    Figure 3.  Experimental device diagram

    图 4  (1)~(10)分别为10种浓度N2O气体的实测透过率光谱与理论透过率光谱,其中a~b、c~d以及e~f为实测有效波段范围

    Figure 4.  (1) to (10) are the measured and theoretical transmittance spectra of 10 concentrations of N2O gas, where a to b, c to d and e to f are the measured effective band ranges

    图 5  (1)2.8%浓度N2O气体在有效波段2144~2176 cm−1的光谱拟合结果及其残差分布(2)2.8%浓度N2O气体在有效波段2519~2600 cm−1的光谱拟合结果及其残差分布

    Figure 5.  (1) The spectral fitting results and residual distribution of N2O gas with concentration of 2.8% in the effective band of 2144 to 2176 cm−1. (2) The spectral fitting results and residual distribution of N2O gas with concentration of 2.8% in the effective band of 2519 to 2600 cm−1

    图 6  (1)4.4%浓度N2O气体在有效波段2144~2176 cm−1的光谱拟合结果及其残差分布(2)4.4%浓度N2O气体在有效波段2430~2491 cm−1的光谱拟合结果及其残差分布(3)4.4%浓度N2O气体在有效波段2519~2600 cm−1的光谱拟合结果及其残差分布

    Figure 6.  (1) The spectral fitting results and residual distribution of N2O gas with concentration of 4.4% in the effective band of 2144 to 2176 cm−1. (2) The spectral fitting results and residual distribution of N2O gas with concentration of 4.4% in the effective band of 2430 to 2491 cm−1. (3) The spectral fitting results and residual distribution of N2O gas with concentration of 4.4% in the effective band of 2519 to 2600 cm−1

    图 7  传统单波段与多波段以及自适应多波段联合的浓度反演结果相较于真实值的误差分布

    Figure 7.  The error distribution of the traditional single-band, multi-band, and adaptive multi-band joint concentration inversion results compared with the real values

    图 8  自适应多波段联合浓度反演结果的分布曲线

    Figure 8.  Distribution curve of adaptive multi-band joint concentration inversion results

    表  1  10种浓度N2O气体的实测有效波段与理论有效波段及其误差分析

    Table  1.   The measured effective band and theoretical effective band of 10 concentrations of N2O gas and their error analysis

    浓度 实测有效波段( cm−1) 理论有效波段( cm−1) 误差
    2.8% 2144~2176, 2519~2600 2141~2173, 2520~2600 ≤4 cm−1
    3.0% 2144~2176, 2518~2600 2141~2173, 2520~2600 ≤4 cm−1
    3.2% 2143~2176, 2518~2600 2141~2173, 2520~2600 ≤4 cm−1
    3.4% 2144~2176, 2518~2600 2142~2174, 2520~2600 ≤4 cm−1
    3.6% 2143~2176, 2519~2600 2142~2175, 2519~2600 ≤4 cm−1
    3.8% 2144~2176, 2519~2600 2142~2174, 2519~2600 ≤4 cm−1
    4.0% 2144~2176, 2519~2600 2144~2176, 2519~2600 ≤4 cm−1
    4.2% 2144~2176, 2519~2600 2144~2176, 2519~2600 ≤4 cm−1
    4.4% 2144~2176, 2430~2491, 2519~2600 2144~2176, 2430~2492, 2519~2600 ≤4 cm−1
    4.6% 2144~2176, 2430~2491, 2519~2600 2144~2176, 2430~2492, 2519~2600 ≤4 cm−1
    下载: 导出CSV

    表  2  传统单波段与多波段以及自适应多波段联合浓度反演结果

    Table  2.   Traditional single-band, multi-band, and adaptive multi-band joint concentration inversion results

    真实值 传统单波段浓度
    反演结果Cn
    传统多波段浓度
    反演结果`C
    自适应多波段联合
    浓度反演结果
    Hn Ĉ
    2.8% C1=2.83%
    C2=2.72%
    2.775% H1=0.67
    H2=0.33
    2.794%
    3.0% C1=2.93%
    C2=3.13%
    3.030% H1=0.78
    H2=0.22
    2.968%
    3.2% C1=3.15%
    C2=3.35%
    3.250% H1=0.85
    H2=0.15
    3.180%
    3.4% C1=3.35%
    C2=3.26%
    3.305% H1=0.88
    H2=0.12
    3.339%
    3.6% C1=3.63%
    C2=3.51%
    3.570% H1=0.89
    H2=0.11
    3.616%
    3.8% C1=3.83%
    C2=3.89%
    3.860% H1=0.78
    H2=0.22
    3.843%
    4.0% C1=4.03%
    C2=3.88%
    3.955% H1=0.91
    H2=0.09
    4.016%
    4.2% C1=4.17%
    C2=4.31%
    4.240% H1=0.87
    H2=0.13
    4.188%
    4.4% C1=4.43%
    C2=4.37%
    C3=4.48%
    4.427% H1=0.41
    H2=0.39
    H3=0.20
    4.416%
    4.6% C1=4.61%
    C2=4.55%
    C3=4.52%
    4.560% H1=0.73
    H2=0.18
    H3=0.09
    4.591%
    下载: 导出CSV

    表  3  传统单波段与多波段浓度反演以及自适应多波段联合浓度反演算法评价结果

    Table  3.   The evaluation results of traditional single-band, multi-band, and adaptive multi-band joint concentration inversion algorithm

    算法SR2RMSEMAEMRE
    传统单波段浓度反演220.98200.07960.06860.0191
    传统多波段联合浓度反演100.99280.04840.04420.0122
    自适应多波段联合浓度反演100.99760.02830.02310.0065
    下载: 导出CSV

    表  4  不同浓度N2O的相关系数

    Table  4.   The correlation coefficients of different concentrations of N2O

    浓度相关系数
    2.0%0.999177
    2.2%0.999622
    2.4%0.999286
    2.6%0.999139
    4.8%0.999201
    5.0%0.999148
    5.2%0.999172
    5.4%0.999379
    5.6%0.999485
    5.8%0.999521
    下载: 导出CSV

    表  5  SO2与CO的自适应多波段联合浓度反演算法评价结果

    Table  5.   The evaluation results of adaptive multi-band joint concentration inversion algorithm of CO and SO2

    气体浓度\间隔R2RMSEMAEMRE
    SO21%~10%\1%0.96520.03930.02370.0172
    CO0.1%~1%\0.1%0.99430.02050.01470.0065
    下载: 导出CSV
  • [1] CUISSET A, VENABLES D S, GAO X M, et al. Applications of spectroscopy in environmental monitoring of gases and aerosols[J]. Journal of Spectroscopy, 2016, 2016: 2575782.
    [2] YANG CH, ZHOU ZH Y, LI Y, et al. Measuring the tuning curve of spontaneous parameter downconversion using a comet-tail-like pattern[J]. Optics Letters, 2022, 47(4): 898-901. doi: 10.1364/OL.447674
    [3] TALGHADER J J, GAWARIKAR A S, SHEA R P. Spectral selectivity in infrared thermal detection[J]. Light: Science & Applications, 2012, 1(8): e24.
    [4] ZHAO B X, LIANG J Q, LV J G, et al. Reducing the influence of systematic errors in interference core of stepped micro-mirror imaging fourier transform spectrometer: a novel calibration method[J]. Remote Sensing, 2023, 15(4): 985. doi: 10.3390/rs15040985
    [5] 张璐, 李博, 李寒霜, 等. 超光谱分辨率紫外双通道共光路成像光谱仪设计[J]. 中国光学(中英文),2022,15(5):1029-1037. doi: 10.37188/CO.2022-0125

    ZHANG L, LI B, LI H SH, et al. Hyperspectral resolution ultraviolet dual channel common optical path imaging spectrometer[J]. Chinese Optics, 2022, 15(5): 1029-1037. (in Chinese). doi: 10.37188/CO.2022-0125
    [6] LI A, YAO CH H, XIA J F, et al. Advances in cost-effective integrated spectrometers[J]. Light: Science & Applications, 2022, 11(1): 174.
    [7] ARRIGONE G M, HILTON M. Theory and practice in using Fourier transform infrared spectroscopy to detect hydrocarbons in emissions from gas turbine engines[J]. Fuel, 2005, 84(9): 1052-1058. doi: 10.1016/j.fuel.2005.01.018
    [8] 刘成员, 于江玉, 李奉翠, 等. 拉曼光谱测试技术在可充电铝离子电池储能机理的研究进展[J]. 应用化学,2023,40(10):1347-1358.

    LIU CH Y, YU J Y, LI F C, et al. Research progress of Raman spectroscopy technique in energy storage mechanism of rechargeable aluminum-ion batteries[J]. Chinese Journal of Applied Chemistry, 2023, 40(10): 1347-1358. (in Chinese).
    [9] 仝大伟, 孔明, 向育斌. 含甲氧基四苯乙烯咪唑化合物的合成、光物理性质、理论计算及细胞成像[J]. 应用化学,2023,40(9):1322-1333.

    TONG D W, KONG M, XIANG Y B. Synthesis, photophysical properties, theoretical calculation and cell imaging of a tetraphenylethene imidazole compound with methoxy group[J]. Chinese Journal of Applied Chemistry, 2023, 40(9): 1322-1333. (in Chinese).
    [10] 舒开强, 陈友元, 彭郑英, 等. 铀矿中多目标元素的激光诱导击穿光谱定量分析方法研究[J]. 分析化学,2023,51(7):1195-1203.

    SHU K Q, CHEN Y Y, PENG ZH Y, et al. Laser-induced breakdown spectroscopy for quantitative analysis of multi-target elements in uranium ore[J]. Chinese Journal of Analytical Chemistry, 2023, 51(7): 1195-1203. (in Chinese).
    [11] 陈玥瑶, 夏静静, 韦芸, 等. 近红外光谱法无损检测平谷产大桃品质方法研究[J]. 分析化学,2023,51(3):454-462.

    CHEN Y Y, XIA J J, WEI Y, et al. Research on nondestructive quality test of Pinggu peach by near-infrared spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2023, 51(3): 454-462. (in Chinese).
    [12] LI H L, DI S, LV W J, et al. Research on the measurement of CO2 concentration based on multi-band fusion model[J]. Applied Physics B, 2021, 127(1): 5. doi: 10.1007/s00340-020-07564-8
    [13] CIĘSZCZYK S. A multi-band integrated virtual calibration-inversion method for open path ftir spectrometry[J]. Metrology and Measurement Systems, 2013, 20(2): 287-298. doi: 10.2478/mms-2013-0025
    [14] 吴时超. 基于中波红外光谱信息的大气CO2反演方法[D]. 合肥: 中国科学技术大学, 2021.

    WU SH CH. Atmospheric CO2 inversion method based on mid-wave infrared spectral information[D]. Hefei: University of Science and Technology of China, 2021. (in Chinese).
    [15] WANG W ZH, WANG Y M, SONG W J, et al. Multiband infrared inversion for low-concentration methane monitoring in a confined dust-polluted atmosphere[J]. Applied Optics, 2017, 56(9): 2548-2555. doi: 10.1364/AO.56.002548
    [16] 吴靖, 张朋朋, 黄峰, 等. NO2双通道光谱成像定量监测技术研究[J]. 仪器仪表学报,2022,43(4):155-162.

    WU J, ZHANG P P, HUANG F, et al. Research on quantitative monitoring technology of NO2 dual-channel spectral imaging[J]. Chinese Journal of Scientific Instrument, 2022, 43(4): 155-162. (in Chinese).
    [17] 周佳巧, 崔文楠, 张涛, 等. 基于光谱测量数据的自适应波段选择技术[J]. 激光与光电子学进展,2019,56(23):232501.

    ZHOU J Q, CUI W N, ZHANG T, et al. Adaptive band selection technique based on spectral measurement data[J]. Laser & Optoelectronics Progress, 2019, 56(23): 232501. (in Chinese).
    [18] HAALAND D M, HAN L, NIEMCZYK T M. Use of CLS to understand PLS IR calibration for trace detection of organic molecules in water[J]. Applied Spectroscopy, 1999, 53(4): 390-395. doi: 10.1366/0003702991946848
    [19] CHUKWU R, MUGISA J, BROGIOLI D, et al. Statistical analysis of the measurement noise in dynamic impedance spectra[J]. Chemelectrochem, 2022, 9(14): e202200109. doi: 10.1002/celc.202200109
    [20] 刘海涛, 魏汝祥, 蒋国萍. 基于加权偏最小二乘回归的软件成本估算方法[J]. 计算机工程,2012,38(21):36-39. doi: 10.3969/j.issn.1000-3428.2012.21.010

    LIU H T, WEI R X, JIANG G P. Software cost estimation method based on weighted partial least squares regression[J]. Computer Engineering, 2012, 38(21): 36-39. (in Chinese). doi: 10.3969/j.issn.1000-3428.2012.21.010
    [21] 齐亚欣, 陈嵩. 一种基于多元回归的射线数字图像影响因子的权重分配方法[J]. 无损检测,2018,40(8):6-9,14. doi: 10.11973/wsjc201808002

    QI Y X, CHEN S. A weight assignment method for influencing factors of radiographic digital images based on multiple regression[J]. Nondestructive Testing, 2018, 40(8): 6-9,14. (in Chinese). doi: 10.11973/wsjc201808002
    [22] CONDE O M, DE LA CRUZ J, RODRIGUEZ-COBO L, et al. Optimized image calibration for spectroscopic systems[C]. Proceedings of 2011 IEEE SENSORS, IEEE, 2011.
    [23] DRYJAŃSKI P. Error analysis of infrared transmission measurements: determination of baseline, choice of peak maximum and range truncation in band profile and integrated intensity determination[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1998, 54(2): 265-276. doi: 10.1016/S1386-1425(97)00215-1
    [24] LIU H, ZHU J, YIN H, et al. Extreme learning machine and genetic algorithm in quantitative analysis of sulfur hexafluoride by infrared spectroscopy: erratum[J]. Applied Optics, 2023, 62(23): 6169-6170. doi: 10.1364/AO.499761
    [25] 张豹, 高潮, 郭永彩, 等. 基于DOAS及统计量的低浓度SO2测量方法(英文)[J]. 光子学报,2018,47(2):0230001.

    ZHANG B, GAO CH, GUO Y C, et al. Measurement method for low-concentration SO2 based on statistics and DOAS[J]. Acta Photonica Sinica, 2018, 47(2): 0230001. (查阅网上资料, 本条文献为英文文献, 请确认) .
    [26] 程巳阳, 张天舒, 高闽光, 等. FTIR光谱高温气体浓度反演方法及残差结构分析[J]. 光谱学与光谱分析,2011,31(1):82-85. doi: 10.3964/j.issn.1000-0593(2011)01-0082-04

    CHENG S Y, ZHANG T SH, GAO M G, et al. Concentration inversion of high temperature air from FTIR spectra and analyzing residual error structure[J]. Spectroscopy and Spectral Analysis, 2011, 31(1): 82-85. (in Chinese). doi: 10.3964/j.issn.1000-0593(2011)01-0082-04
    [27] NIE W, XU ZH Y, RAO G F, et al. Methods of tunable diode laser absorption saturation spectroscopy to gas sensing under optically thick conditions[J]. Microwave and Optical Technology Letters, 2021, 63(8): 2063-2067. doi: 10.1002/mop.32840
    [28] CAI Y F, XU ZH, JI K F. Measurement and correction of instrumental profiles for the spectral data of the new vacuum solar telescope[J]. Solar Physics, 2020, 295(2): 31. doi: 10.1007/s11207-020-1598-0
    [29] WANG F, MA S X, YAN G W. A PLS-based random forest for NOx emission measurement of power plant[J]. Chemometrics and Intelligent Laboratory Systems, 2023, 240: 104926. doi: 10.1016/j.chemolab.2023.104926
    [30] PEI X K, GIDON D, YANG Y J, et al. Reducing energy cost of NO x production in air plasmas[J]. Chemical Engineering Journal, 2019, 362: 217-228. doi: 10.1016/j.cej.2019.01.011
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  19
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-15
  • 录用日期:  2024-05-24
  • 网络出版日期:  2024-06-15

目录

    /

    返回文章
    返回