留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

云地闪电通道的径向结构及光辐射特征

刘国荣 代炎炎 朱维君 褚润通 袁萍 孙对兄 马云云

刘国荣, 代炎炎, 朱维君, 褚润通, 袁萍, 孙对兄, 马云云. 云地闪电通道的径向结构及光辐射特征[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0017
引用本文: 刘国荣, 代炎炎, 朱维君, 褚润通, 袁萍, 孙对兄, 马云云. 云地闪电通道的径向结构及光辐射特征[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0017
LIU Guo-rong, DAI Yan-yan, ZHU Wei-jun, CHU Run-tong, YUAN Ping, SUN Dui-xiong, MA Yun-yun. Radial structure and optical radiation characteristics of the cloud-ground lightning channel[J]. Chinese Optics. doi: 10.37188/CO.2024-0017
Citation: LIU Guo-rong, DAI Yan-yan, ZHU Wei-jun, CHU Run-tong, YUAN Ping, SUN Dui-xiong, MA Yun-yun. Radial structure and optical radiation characteristics of the cloud-ground lightning channel[J]. Chinese Optics. doi: 10.37188/CO.2024-0017

云地闪电通道的径向结构及光辐射特征

doi: 10.37188/CO.2024-0017
基金项目: 国家自然科学基金项目(No. 62065011)
详细信息
    作者简介:

    刘国荣(1972—),男,博士,副教授,主要从事等离子体光谱及应用、雷电物理和雷电防护等相关研究。E-mail:liugr07@163.com

  • 中图分类号: O433.1;P416.2

Radial structure and optical radiation characteristics of the cloud-ground lightning channel

Funds: Supported by National Natural Science Foundations of China (No. 62065011)
More Information
  • 摘要:

    研究云地闪电通道的径向结构及光辐射特征,可为揭示云地闪电通道形成和发展过程的微观物理机制提供参考依据,为闪电防护提供科学指导。研究小组利用无狭缝高速摄谱仪,在青海高原地区实施野外观测试验。在一次云地闪电中记录到了清晰可见的通道核心,而且在通道核心的外边缘和外部发光通道之间发现有一个较弱的发光区。基于光谱观测,对比分析了首次回击和第三次继后回击的光辐射特征。在实验上验证了闪电通道电晕鞘模型,确定了连接点的位置,估算得到两个回击的闪击距离分别为57 m和53 m,并证实了回击放电最强的点在连接点处。从而推断,在回击初期,云地闪电回击通道沿径向由内到外依次为通道核心-弱发光区-电晕鞘外层,即闪电通道内沿通道径向的电荷分布是不均匀的;闪电通道的光辐射特征与放电的强度和持续时间密切相关。

     

  • 图 1  梯级先导通道的最后一幅图片和首次回击通道的连续两幅图片

    Figure 1.  Last image of the stepped leader channel and the two successive images of the first return stroke channel

    图 2  不同样品点沿通道径向的灰度值分布

    Figure 2.  Gray value distribution of the different sample points along the radial channel

    图 3  首次回击不同时刻的原始光谱图

    Figure 3.  Original spectrogram of the first return stroke at different times

    图 4  首次回击通道上4个样品点分别在0和0.125 ms的谱线图

    Figure 4.  Spectra of 4 sample points on the first return stroke channel at 0 and 0.125 ms, respectively

    图 5  首次回击和第三次继后回击的通道图片

    Figure 5.  Channel images of the first return stroke and the third subsequent return stroke

    图 6  第三次继后不同时刻的原始光谱图

    Figure 6.  Original spectrogram of the third subsequent return stroke at different times

    图 7  第三次继后回击4个样品点分别在87.138 ms的谱线图

    Figure 7.  Spectra of 4 sample points of the third subsequent return stroke at 87.138 ms

    表  1  观测的谱线波长、激发能和跃迁几率

    Table  1.   Observed spectral line wavelength, excitation energy and transition probability

    波长 (nm) 激发能 (eV) 跃迁几率 (×108 s−1)
    NII 444.7 23.196 1.12
    NII 463.0 21.159 0.748
    NII 500.5 23.141 1.14
    NII 568.0 20.665 0.496
    NII 594.2 23.239 0.547
    Hα 656.3 12.087 0.441
    O I 715.6 14.460 0.505
    NI 746.8 11.995 0.196
    O I 777.4 10.740 0.369
    O I 794.7 14.100 0.373
    NI 821.6 11.844 0.226
    O I 844.6 10.988 0.322
    NI 868.0 11.763 0.253
    下载: 导出CSV
  • [1] PIERCE E T. The development of lightning discharges[J]. Quarterly Journal of the Royal Meteorological Society, 1955, 81(348): 229-240. doi: 10.1002/qj.49708134809
    [2] MASLOWSKI G, RAKOV V A. A study of the lightning channel corona sheath[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D14): D14110.
    [3] CVETIC J, HEIDLER F, MARKOVIC S, et al. Dynamics of a lightning corona sheath-A constant field approach using the generalized traveling current source return stroke model[J]. Atmospheric Research, 2012, 117: 122-131. doi: 10.1016/j.atmosres.2012.03.012
    [4] DENG H, YUAN P, AN T T, et al. Time-evolution characteristics of spectrum and temperature of lightning discharge plasma[J]. Journal of the Optical Society of America B, 2022, 39(12): 3320-3328. doi: 10.1364/JOSAB.475278
    [5] 刘国荣, 朱维君, 褚润通, 等. 依据不同波段光谱诊断闪电回击通道温度[J]. 物理学报,2022,71(10):109201. doi: 10.7498/aps.71.20211673

    LIU G R, ZHU W J, CHU R T, et al. Diagnosis of lightning return stroke channel temperature according to different band spectra[J]. Acta Physica Sinica, 2022, 71(10): 109201. (in Chinese). doi: 10.7498/aps.71.20211673
    [6] WANG W SH, YUAN P, AN T T, et al. The propagation characteristics of the return-stroke electric wave in consideration of corona sheath[J]. Atmospheric Research, 2023, 292: 106849. doi: 10.1016/j.atmosres.2023.106849
    [7] AN T T, YUAN P, CEN J Y, et al. Temperature of apparent natural ball lightning obtained by examination of the spectra[J]. Physics of Plasmas, 2022, 29(11): 113503. doi: 10.1063/5.0098329
    [8] WANG W SH, YUAN P, HUANG X, et al. The initial radius of lightning return stroke channel and its relation with discharge intensity[J]. Atmospheric Research, 2022, 273: 106161. doi: 10.1016/j.atmosres.2022.106161
    [9] LIU G R, YUAN P, AN T T, et al. A visible channel core and the channel structure below the connection point for natural cloud-to-ground lightning[J]. Applied Physics Letters, 2019, 115(6): 064103. doi: 10.1063/1.5111845
    [10] WANG X J, YUAN P, CEN J Y, et al. Correlation between the spectral features and electric field changes of multiple return strokes in negative cloud-to-ground lightning[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(9): 4993-5002. doi: 10.1002/2016JD026200
    [11] SABA M M F, PAIVA A R, SCHUMANN C, et al. Lightning attachment process to common buildings[J]. Geophysical Research Letters, 2017, 44(9): 4368-4375. doi: 10.1002/2017GL072796
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  18
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-17
  • 录用日期:  2024-04-15
  • 网络出版日期:  2024-05-10

目录

    /

    返回文章
    返回