留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于紫外激光的羟基-平面激光诱导荧光探测研究进展

张仲磷 杨岸龙 王江 程光华

张仲磷, 杨岸龙, 王江, 程光华. 基于紫外激光的羟基-平面激光诱导荧光探测研究进展[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0013
引用本文: 张仲磷, 杨岸龙, 王江, 程光华. 基于紫外激光的羟基-平面激光诱导荧光探测研究进展[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0013
ZHANG Zhong-lin, YANG An-long, WANG Jiang, CHENG Guang-hua. Research progress of hydroxy-plane laser induced fluorescence detection based on ultraviolet laser[J]. Chinese Optics. doi: 10.37188/CO.2024-0013
Citation: ZHANG Zhong-lin, YANG An-long, WANG Jiang, CHENG Guang-hua. Research progress of hydroxy-plane laser induced fluorescence detection based on ultraviolet laser[J]. Chinese Optics. doi: 10.37188/CO.2024-0013

基于紫外激光的羟基-平面激光诱导荧光探测研究进展

doi: 10.37188/CO.2024-0013
基金项目: 国家重点研发计划(No. 2022YFB4600201)
详细信息
    作者简介:

    张仲磷(1996—),男,甘肃定西人,西北工业大学博士研究生,2018年于西安电子科技大学获得学士学位,2020年于哈尔滨工程大学获得硕士学位,主要从事固体激光器设计方面的研究。E-mail:zhangzhonglin@mail.nwpu.edu.cn

    程光华(1976—),男,陕西安康人,博士,教授,博士生导师,1999年于西北大学获得学士学位,2004年于中国科学院西安光学精密机械研究所获博士学位。主要从事超短脉冲激光技术、超快激光于物质相互作用、飞秒激光微纳加工技术研究。E-mail:guanghuacheng@nwpu.edu.cn

  • 中图分类号: TP394.1;TH691.9

Research progress of hydroxy-plane laser induced fluorescence detection based on ultraviolet laser

Funds: Supported by National Key Research and Development Program of China (No. 2022YFB4600201)
  • 摘要:

    羟基(OH)是一种广泛存在于燃烧反应过程中的产物,在燃烧诊断技术中,基于羟基的二维空间分布常用于表征火焰的锋面结构,同时羟基是表征火焰温度、火焰面密度和热释放速率等特征的重要参数。对燃烧火焰中的羟基进行有效探测是探究燃烧动力学演变过程,揭示火焰随机事件产生机理的重要支撑。平面激光诱导荧光(PLIF)技术作为一种光学测量方法具有时空分辨率高、无干扰、组份选择等优点,已成功对本生灯火焰、湍流火焰、旋流火焰和超声速火焰等多种燃烧火焰进行了结构观测,为建立燃烧模型提供了重要参考。本文从PLIF探测的基本原理开始,梳理了PLIF技术在燃烧诊断领域的发展历程和研究现状,介绍了基于染料激光、光参量振荡和钛宝石三倍频方式实现的PLIF紫外光源技术,并对不同技术路线的特点进行了讨论,最后对用于OH-PLIF的紫外激光技术发展进行了展望。

     

  • 图 1  平面激光诱导荧光成像原理图

    Figure 1.  Schematic diagram of planar laser induced fluorescence imaging

    图 2  (a)平均速度矢量 (b)OH-PLIF探测结果[29]

    Figure 2.  Mean velocity vectors (b) instantaneous OH-PLIF image[29]

    图 3  丙酮-PLIF在旋转爆震发动机的径向图[30]

    Figure 3.  Radial diagram of acetone-PLIF in a rotating detonation engine[30]

    图 4  OH与CH-PLIF在流向截面的火焰结构成像对比[33]

    Figure 4.  Comparison of OH-PLIF and CH-PLIF image in a cavity-stabilized scramjet combustor[33]

    图 5  1-8个大气压贫预混天然气火焰OH测量[18]

    Figure 5.  Experimental set-up for OH measurement of 1-8 atmospheres lean premixed natural gas flames[18]

    图 6  (a)实验装置, (b)射流燃烧器, (c)成像区域[44]

    Figure 6.  (a) Experimental setup, (b) jet burner, and (c) imaging region[44]

    图 7  50 kHz高速OH-PLIF系统[47]

    Figure 7.  50 kHz high-speed OH-PLIF system[47]

    图 8  20 kHz、CH2O -PLIF/PIV实验装置[48]

    Figure 8.  20 kHz H, CH2O -PLIF/PIV experimental setup[48]

    图 9  7.5 kHz、OH/CH2O -PLIF实验装置[50]

    Figure 9.  7.5 kHz, OH/CH2O -PLIF experimental setup [50]

    图 10  10 kHz 双平面PIV和OH-PLIF实验装置图[51]

    Figure 10.  Diagram of the 10 kHz biplane PIV and OH-PLIF experimental setups[51]

    图 11  OPO紫外激光实验装置[52]

    Figure 11.  OPO Ultraviolet Laser Experimental Equipment[52]

    图 12  种子注入burst模式OPO紫外激光实验装置[53]

    Figure 12.  Experimental setup for seed injection of burst-mode OPO UV lasers[53]

    图 13  基于OPO和倍频方式的50 kHz重频PLIF实验装置[54]

    Figure 13.  Experimental setup for 50 kHz PLIF based on OPO and frequency doubling method[54]

    图 14  超高速OH/CH2O-PLIF探测系统[55]

    Figure 14.  Schematic diagram of experimental setup for ultra-high-speed simultaneous OH and CH2O-PLIF[55]

    图 15  三臂Burst模式激光系统[56]

    Figure 15.  Schematic of the three-legged burst-mode laser system[56]

    图 16  (1) MHz泵浦源光路[57] (2)(a)基于OPO-burst OH-PLIF的旋转爆震燃烧实验装置 (b)OPO光路图[58]

    Figure 16.  (1) MHz pump source optical path [57] (2) (a) OPO-burst OH-PLIF based rotary burst combustion experimental setup (b) OPO optical path diagram[58]

    图 17  飞秒OH-PLIF探测装置[59]

    Figure 17.  Femtosecond OH-PLIF detector[59]

    图 18  (1)基于钛宝石三倍频实现的283 nm紫外激光器(2)本生灯探测结果[60]

    Figure 18.  (1) 283 nm UV laser based on titanium gemstone triplex realisation (2) Bunsen burner detection results[60]

    表  1  用于OH-PLIF的紫外激光器性能对比

    Table  1.   Performance Comparison of UV Lasers for OH-PLIF

    Year Operation mode Repetition frequency Wavelength Output power Pulse energy Conversion efficiency
    2007[18] Rhodamine +SHG 10 Hz 283.92 nm 0.06 W 6 mJ -
    2007[43] Rhodamine 5G+BBO SHG 2.5 kHz
    5 kHz
    283 nm 130 mW
    110 mW
    50 μJ
    22 μJ
    0.7%
    0.6%
    2009[44] Rhodamine 6G+SHG 1.5 kHz 283 nm 0.82 W 0.54 mJ 1.6%
    2009[45] Rhodamine 6G+BBO SHG 5 kHz 283.2 nm 0.5 W 100 μJ 2.6%
    2010[46] Rhodamine 6G+BBO SHG 10 kHz 283.2 nm 1.4 W 140 μJ 3.5%
    2014[47] Rhodamine 6G+2*BBO SHG+MOPA 50 kHz 283 nm 7 W 0.14 mJ 3.5%
    2018[48] Burst/Rhodamine 6G+SHG 20 kHz 283 1.8 W 90 μJ 2.8%
    2018[49] Burst/Rhodamine 6G+MOPA+BBO SHG 7.5 kHz 282.985 nm 16.5 W 2.2 mJ -
    2018[11] Rhodamine 590+SHG - 283 nm - 12 mJ -
    2020[51] Dye laser+SHG 10 kHz 283.9 nm 1.6 W 0.16 mJ -
    2009[52] Burst/Seeding OPO+BBO SHG - 282.97 nm 0.2 W - -
    2017[53] Burst/Seeding OPO+BBO SFG 10 kHz 284.005 nm - 3 mJ -
    2017[54] Burst/Multi-YAG+OPO+SHG 50 kHz 283 nm - 2 mJ 1.25%
    2017[55] Burst/OPO+BBO SHG 50 kHz 284 nm - 350 μJ 0.7%
    2018[56] OPO+SFG 10 kHz 284 nm - 5 mJ 0.7%
    2020[58] Burst/Seeding OPO+BBO SFG 1 MHz 284 nm - 400 μJ 0.6%
    2020[59] fs Ti:sapphire+ BBO THG 1 kHz 283 nm - 90 μJ 4.5%
    2023[60] ns Ti:sapphire+LBO SHG+BBO THG 1 kHz 283 nm 0.56W 0.56 mJ 2.8%
    下载: 导出CSV
  • [1] 武国华, 于欣, 彭江波, 等. 超燃冲压发动机羟基/煤油-PLIF同步测量研究[J]. 推进技术,2024,45(1):2210098.

    WU G H, YU X, PENG J B, et al. Simultaneous measurements of OH/Kerosene-PLIF in scramjet[J]. Journal of Propulsion Technology, 2024, 45(1): 2210098. (in Chinese).
    [2] JOO S, KWAK S, LEE M C. Effect of fuel line acoustics on the flame dynamics of H2/CH4 syngas in a partially premixed gas turbine combustor[J]. Fuel, 2021, 285: 119231. doi: 10.1016/j.fuel.2020.119231
    [3] 尚勇, 何旭, 刘福水, 等. 燃烧光学可视化技术在内燃机测试中的应用研究[J]. 小型内燃机与车辆技术,2016,45(5):1-7. doi: 10.3969/j.issn.1671-0630.2016.05.001

    SHANG Y, HE X, LIU F SH, et al. Research on the application of combustion optical visualization technology in the test of internal combustion engine[J]. Small Internal Combustion Engine and Vehicle Technique, 2016, 45(5): 1-7. (in Chinese). doi: 10.3969/j.issn.1671-0630.2016.05.001
    [4] 王健儒, 晁侃, 陆贺建. 大型分段式固体火箭发动机点火瞬态过程研究[J]. 固体火箭技术,2017,40(2):141-145. doi: 10.7673/j.issn.1006-2793.2017.02.002

    WANG J R, CHAO K, LU H J. Investigation of ignition transient in large segmented SRM[J]. Journal of Solid Rocket Technology, 2017, 40(2): 141-145. (in Chinese). doi: 10.7673/j.issn.1006-2793.2017.02.002
    [5] 寇志海, 王清印, 李广超, 等. 航空发动机高温壁面热电偶测温技术应用[J]. 热能动力工程,2023,38(1):202-210.

    KOU ZH H, WANG Q Y, LI G CH, et al. Thermocouple measurement technology for high temperature wall in aero-engine[J]. Journal of Engineering for Thermal Energy and Power, 2023, 38(1): 202-210. (in Chinese).
    [6] WRBANEK J D, FRALICK G C. Thin film physical sensor instrumentation research and development at nasa glenn research center[C]. Proceedings of the 52nd International Instrumentation Symposium, 2006: 82-91. (查阅网上资料, 未找到本条文献出版者信息, 请确认) .
    [7] SOBCZYK J. Experimental study of the flow field disturbance in the vicinity of single sensor hot-wire anemometer[J]. EPJ Web of Conferences, 2018, 180: 02094. doi: 10.1051/epjconf/201818002094
    [8] 苏铁, 陈爽, 杨富荣, 等. 双色平面激光诱导荧光瞬态燃烧场测温实验[J]. 红外与激光工程,2014,43(6):1750-1754. doi: 10.3969/j.issn.1007-2276.2014.06.010

    SU T, CHEN SH, YANG F R, et al. Investigation of temperature of transient combustion using two-line PLIF[J]. Infrared and Laser Engineering, 2014, 43(6): 1750-1754. (in Chinese). doi: 10.3969/j.issn.1007-2276.2014.06.010
    [9] PAUL P H, NAJM H N. Planar laser-induced fluorescence imaging of flame heat release rate[J]. Symposium (International) on Combustion, 1998, 27(1): 43-50. doi: 10.1016/S0082-0784(98)80388-3
    [10] ZHOU B, KIEFER J, ZETTERBERG J, et al. Strategy for PLIF single-shot HCO imaging in turbulent methane/air flames[J]. Combustion and Flame, 2014, 161(6): 1566-1574. doi: 10.1016/j.combustflame.2013.11.019
    [11] 李红, 李博, 高强, 等. OH/CH2O基于PLIF测量得到的火焰面密度比较研究[J]. 燃烧科学与技术,2018,24(6):523-527.

    LI H, LI B, GAO Q, et al. Plane laser-induced fluorescence for flame surface density calculation of OH/CH2O: A comparative study[J]. Journal of Combustion Science and Technology, 2018, 24(6): 523-527. (in Chinese).
    [12] RASMUSSEN C C, DHANUKA S K, DRISCOLL J F. Visualization of flameholding mechanisms in a supersonic combustor using PLIF[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2505-2512. doi: 10.1016/j.proci.2006.08.007
    [13] KARIUKI J, DOWLUT A, YUAN R, et al. Heat release imaging in turbulent premixed methane–air flames close to blow-off[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1443-1450. doi: 10.1016/j.proci.2014.05.144
    [14] FIALA T, SATTELMAYER T. Heat release and UV–Vis radiation in non-premixed hydrogen–oxygen flames[J]. Experiments in Fluids, 2015, 56(7): 144. doi: 10.1007/s00348-015-2013-8
    [15] CIARDIELLO R, PATHANIA R S, HELOU I E, et al. Lean blow-off investigation in a linear multi-burner combustor operated in premixed and non-premixed modes[J]. Applications in Energy and Combustion Science, 2022, 9: 100041. doi: 10.1016/j.jaecs.2021.100041
    [16] KARIUKI J, DOWLUT A, BALACHANDRAN R, et al. Heat release imaging in turbulent premixed ethylene-air flames near blow-off[J]. Flow, Turbulence and Combustion, 2016, 96(4): 1039-1051. doi: 10.1007/s10494-016-9720-y
    [17] MULLA I A, DOWLUT A, HUSSAIN T, et al. Heat release rate estimation in laminar premixed flames using laser-induced fluorescence of CH2O and H-atom[J]. Combustion and Flame, 2016, 165: 373-383. doi: 10.1016/j.combustflame.2015.12.023
    [18] STRAKEY P A, WOODRUFF S D, WILLIAMS T C, et al. OH-PLIF measurements of high-pressure, hydrogen augmented premixed flames in the simval combustor[C]. 45th AIAA Aerospace Sciences Meeting and Exhibit, AIAA, 2007: 11867-11880.
    [19] MILLER J D, ENGEL S R, TROGER J W, et al. Characterization of a CH planar laser-induced fluorescence imaging system using a kHz-rate multimode-pumped optical parametric oscillator[J]. Applied Optics, 2012, 51(14): 2589-2600. doi: 10.1364/AO.51.002589
    [20] BOHON M D, GUIBERTI T F, ROBERTS W L. PLIF measurements of non-thermal NO concentrations in alcohol and alkane premixed flames[J]. Combustion and Flame, 2018, 194: 363-375. doi: 10.1016/j.combustflame.2018.05.024
    [21] SCHULZ C, SICK V, HEINZE J, et al. Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A-X(0, 2) excitation[J]. Applied Optics, 1997, 36(15): 3227-3232. doi: 10.1364/AO.36.003227
    [22] PALMER J L, MCMILLIN B K, HANSON R K. Multi-line fluorescence imaging of the rotational temperature field in a shock-tunnel free jet[J]. Applied Physics B, 1996, 63(2): 167-178. doi: 10.1007/BF01095269
    [23] HEINZE J, MEIER U, BEHRENDT T, et al. PLIF thermometry based on measurements of absolute concentrations of the OH radical[J]. Zeitschrift für Physikalische Chemie, 2011, 225(11-12): 1315-1341.
    [24] 于欣, 杨超博, 彭江波, 等. 基于紫外可调谐激光吸收光谱技术的甲烷/空气平面预混火焰温度测量研究[J]. 光谱学与光谱分析,2016,36(4):1027-1032.

    YU X, YANG CH B, PENG J B, et al. Temperature measurement of CH4/air premix flat flame based on the absorption spectroscopy technology of UV tunable laser[J]. Spectroscopy and Spectral Analysis, 2016, 36(4): 1027-1032. (in Chinese).
    [25] GRISCH F, ORAIN M. Role of planar laser-induced fluorescence in combustion research[J]. Journal of Aerospace Lab, 2009(1): 1-14.
    [26] YIP B, MILLE M F, LOZANO A, et al. A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows[J]. Experiments in Fluids, 1994, 17(5): 330-336. doi: 10.1007/BF01874413
    [27] SEITZMAN J M, MILLER M F, ISLAND T C, et al. Double-pulse imaging using simultaneous OH/acetone PLIF for studying the evolution of high-speed, reacting mixing layers[J]. Symposium (International) on Combustion, 1994, 25(1): 1743-1750. doi: 10.1016/S0082-0784(06)80823-4
    [28] BRESSON A, BOUCHARDY P, MAGRE P, et al. OH/acetone PLIF and CARS thermometry in a supersonic reactive layer[C]. 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference, AIAA, 2001: 1759.
    [29] ELBAZ A M, ROBERTS W L. Experimental study of the inverse diffusion flame using high repetition rate OH/acetone PLIF and PIV[J]. Fuel, 2016, 165: 447-461. doi: 10.1016/j.fuel.2015.10.096
    [30] RANKIN B A, FUGGER C A, RICHARDSON D R, et al. Evaluation of mixing processes in a non-premixed rotating detonation engine using acetone PLIF[C]. 54th AIAA Aerospace Sciences Meeting, AIAA, 2016: 1198.
    [31] 严浩, 张少华, 余西龙, 等. OH与CH2O双组分平面激光诱导荧光对旋流燃烧室火焰结构与脉动特征的研究[J]. 航空动力学报,2019,34(4):894-907.

    YAN H, ZHANG SH H, YU X L, et al. Flame structure and dynamics characters inVestigation by OH and CH2O planar laser-induced fluorescence in the swirl combustor[J]. Journal of Aerospace Power, 2019, 34(4): 894-907. (in Chinese).
    [32] 陈晓丽, 金川, 苏秋成, 等. 基于激光诱导荧光法的同轴射流火焰中羟基自由基、甲醛、发热率与一氧化氮的二维可视化测量[J]. 分析测试技术与仪器,2021,27(3):182-188.

    CHEN X L, JIN CH, SU Q CH, et al. Two-dimensional visualization measurement of hydroxyl radical, formaldehyde, heat release rate and nitric oxide in co-flow jet flame based on planar laser induced fluorescence technology[J]. Analysis and Testing Technology and Instruments, 2021, 27(3): 182-188. (in Chinese).
    [33] 梁剑寒, 李韵, 孙明波, 等. 超声速燃烧火焰放热区结构CH-PLIF成像技术[J]. 国防科技大学学报,2019,41(1):27-33. doi: 10.11887/j.cn.201901005

    LIANG J H, LI Y, SUN M B, et al. CH-PLIF imaging of flame heat-release structures in supersonic combustion[J]. Journal of National University of Defense Technology, 2019, 41(1): 27-33. (in Chinese). doi: 10.11887/j.cn.201901005
    [34] 吴戈, 李韵, 万明罡, 等. 平面激光诱导荧光技术在超声速燃烧火焰结构可视化中的应用[J]. 实验流体力学,2020,34(3):70-77. doi: 10.11729/syltlx20190168

    WU G, LI Y, WAN M G, et al. Visualization of flame structure in supersonic combustion by planar laser induced fluorescence technique[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 70-77. (in Chinese). doi: 10.11729/syltlx20190168
    [35] 关小伟, 刘晶儒, 黄梅生, 等. PLIF法定量测量甲烷-空气火焰二维温度场分布[J]. 强激光与粒子束,2005,17(2):173-176.

    GUAN X W, LIU J R, HUANG M SH, et al. Two-dimensional temperature field measurement in a methane-air flame by PLIF[J]. High Power Laser and Particle Beams, 2005, 17(2): 173-176. (in Chinese).
    [36] 曹春丽, 徐胜利, 刘二伟. 双波长NO-PLIF法测量运动激波前后温度场的实验研究[J]. 中国科学技术大学学报,2012,42(12):977-983. doi: 10.3969/j.issn.0253-2778.2012.12.005

    CAO CH L, XU SH L, LIU E W. Temperature measurement on moving shock wave by two-wavelength NO-PLIF method[J]. Journal of University of Science and Technology of China, 2012, 42(12): 977-983. (in Chinese). doi: 10.3969/j.issn.0253-2778.2012.12.005
    [37] 宋东先, 谢辉, 邹庆武, 等. 单线双示踪粒子PLIF测温技术的开发[J]. 小型内燃机与车辆技术,2015,44(4):1-5,55. doi: 10.3969/j.issn.1671-0630.2015.04.001

    SONG D X, XIE H, ZOU Q W, et al. The development of single-line two tracers PLIF temperature measurement technology in an optical engine[J]. Small Internal Combustion Engine and Vehicle Technique, 2015, 44(4): 1-5,55. (in Chinese). doi: 10.3969/j.issn.1671-0630.2015.04.001
    [38] 梁帅, 张周, 丁海春, 等. 用PLIF测量GDI发动机滚流平面的混合气浓度[J]. 内燃机学报,2018,36(6):481-490.

    LIANG SH, ZHANG ZH, DING H CH, et al. Mixture distribution measurement in the tumble plane of a GDI engine via PLIF method[J]. Transactions of CSICE, 2018, 36(6): 481-490. (in Chinese).
    [39] 任晓光, 王兰红, 董全, 等. 基于PLIF技术的天然气喷射流场摩尔浓度特性[J]. 内燃机学报,2020,38(5):417-425.

    REN X G, WANG L H, DONG Q, et al. Concentration characteristics in the flow field of a natural gas injection based on PLIF[J]. Transactions of CSICE, 2020, 38(5): 417-425. (in Chinese).
    [40] SCHMIDT J B, JIANG N, GANGULY B N. Nitric oxide PLIF measurement in a point-to-plane pulsed discharge in vitiated air of a propane/air flame[J]. Plasma Sources Science and Technology, 2014, 23(6): 065005. doi: 10.1088/0963-0252/23/6/065005
    [41] 余响林, 王世敏, 许祖勋, 等. 光电功能性有机染料及其应用研究进展[J]. 染料与染色,2004,41(2):63-66,80.

    YU X L, WANG SH M, XU Z X, et al. Progress on the study of photoelectrical functional organic dyes and their applications[J]. Dyestuffs and Coloration, 2004, 41(2): 63-66,80. (in Chinese).
    [42] 李海鹏, 韩奎, 沈晓鹏, 等. 半花菁衍生物分子第一超极化率频率色散效应的理论研究[J]. 光学学报,2005,25(5):655-660. doi: 10.3321/j.issn:0253-2239.2005.05.018

    LI H P, HAN K, SHEN X P, et al. Theoretical studies on frequency-dispersion effect of first hyperpolarizabilities of hemicyanine derivatives[J]. Acta Optica Sinica, 2005, 25(5): 655-660. (in Chinese). doi: 10.3321/j.issn:0253-2239.2005.05.018
    [43] KITTLER C, DREIZLE A. Cinematographic imaging of hydroxyl radicals in turbulent flames by planar laser-induced fluorescence up to 5 kHz repetition rate[J]. Applied Physics B, 2007, 89(2): 163-166.
    [44] BOXX I, HEEGER C, GORDON R, et al. Simultaneous three-component PIV/OH-PLIF measurements of a turbulent lifted, C3H8-Argon jet diffusion flame at 1.5kHz repetition rate[J]. Proceedings of the Combustion Institute, 2009, 32(1): 905-912. doi: 10.1016/j.proci.2008.06.023
    [45] BOXX I, STÖHR M, CARTER C, et al. Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames[J]. Applied Physics B, 2009, 95(1): 23-29. doi: 10.1007/s00340-009-3420-4
    [46] BOXX I, ARNDT C M, CARTER C D, et al. High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor[J]. Experiments in Fluids, 2012, 52(3): 555-567. doi: 10.1007/s00348-010-1022-x
    [47] HAMMACK S, CARTER C, WUENSCHE C, et al. Continuous hydroxyl radical planar laser imaging at 50 kHz repetition rate[J]. Applied Optics, 2014, 53(23): 5246-5251. doi: 10.1364/AO.53.005246
    [48] HAMMACK S D, CARTER C D, SKIBA A W, et al. 20 kHz CH2O and OH PLIF with stereo PIV[J]. Optics Letters, 2018, 43(5): 1115-1118. doi: 10.1364/OL.43.001115
    [49] PAN R C, RETZER U, WERBLINSKI T, et al. Generation of high-energy, kilohertz-rate narrowband tunable ultraviolet pulses using a burst-mode dye laser system[J]. Optics Letters, 2018, 43(5): 1191-1194. doi: 10.1364/OL.43.001191
    [50] RETZER U, PAN R C, WERBLINSKI T, et al. Burst-mode OH/CH2O planar laser-induced fluorescence imaging of the heat release zone in an unsteady flame[J]. Optics Express, 2018, 26(14): 18105-18114. doi: 10.1364/OE.26.018105
    [51] FUGGER C A, HSU P S, JIANG N B, et al. 10-kHz simultaneous dual-plane stereo-PIV and OH-PLIF imaging[J]. Applied Physics B, 2020, 126(10): 167. doi: 10.1007/s00340-020-07522-4
    [52] SJÖHOLM J, KRISTENSSON E, RICHTER M, et al. Ultra-high-speed pumping of an optical parametric oscillator (OPO) for high-speed laser-induced fluorescence measurements[J]. Measurement Science and Technology, 2009, 20(2): 025306. doi: 10.1088/0957-0233/20/2/025306
    [53] HALLS B R, HSU P S, JIANG N B, et al. kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator[J]. Optica, 2017, 4(8): 897-902. doi: 10.1364/OPTICA.4.000897
    [54] LI Z M, ROSELL J, ALDÉN M, et al. Simultaneous burst imaging of dual species using planar laser-induced fluorescence at 50 kHz in turbulent premixed flames[J]. Applied Spectroscopy, 2017, 71(6): 1363-1367. doi: 10.1177/0003702816678866
    [55] WANG Z K, STAMATOGLOU P, LI Z M, et al. Ultra-high-speed PLIF imaging for simultaneous visualization of multiple species in turbulent flames[J]. Optics Express, 2017, 25(24): 30214-30228. doi: 10.1364/OE.25.030214
    [56] ROY S, JIANG N B, HSU P S, et al. Development of a three-legged, high-speed, burst-mode laser system for simultaneous measurements of velocity and scalars in reacting flows[J]. Optics Letters, 2018, 43(11): 2704-2707. doi: 10.1364/OL.43.002704
    [57] FELVER J, SLIPCHENKO M N, BRAUN E L, et al. High-energy laser pulses for extended duration megahertz-rate flow diagnostics[J]. Optics Letters, 2020, 45(16): 4583-4586. doi: 10.1364/OL.400831
    [58] HSU P S, SLIPCHENKO M N, JIANG N B, et al. Megahertz-rate OH planar laser-induced fluorescence imaging in a rotating detonation combustor[J]. Optics Letters, 2020, 45(20): 5776-5779. doi: 10.1364/OL.403199
    [59] JAIN A, PARAJULI P, WANG Y J, et al. Hydroxyl radical planar laser-induced fluorescence imaging in flames using frequency-tripled femtosecond laser pulses[J]. Optics Letters, 2020, 45(17): 4690-4693. doi: 10.1364/OL.400930
    [60] ZHANG ZH L, YANG A L, WANG J, et al. OH planar laser-induced fluorescence imaging system using a kilohertz-rate 283 nm UV Ti: sapphire laser[J]. Applied Optics, 2023, 62(8): 1915-1920. doi: 10.1364/AO.484749
    [61] 叶景峰, 张振荣, 李国华, 等. 激光激励煤油荧光光谱实验研究[C]. 中国力学大会2011暨钱学森诞辰100周年纪念大会论文集, 中国力学学会, 2011: 1-5.

    YE J F, ZHANG ZH R, LI G H, et al. The experiment study of laser induced kerosene fluorescence[C]. Review of the Chinese Conference on Theoretical and Applied Mechanics-2001 in Memorial of Tsien-Shen's 100th Anniversary, The Chinese Society of Theoretical and Applied Mechanics, 2011: 1-5. (in Chinese) (查阅网上资料, 未找到本条文献英文翻译, 请确认) .
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  14
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-15
  • 录用日期:  2024-03-25
  • 网络出版日期:  2024-04-13

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!