留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超构透镜的微型头戴式荧光显微镜设计

张智淼 王承邈 谢冕 林雨 韩业明 邓永波 郭长亮 付强

张智淼, 王承邈, 谢冕, 林雨, 韩业明, 邓永波, 郭长亮, 付强. 基于超构透镜的微型头戴式荧光显微镜设计[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0237
引用本文: 张智淼, 王承邈, 谢冕, 林雨, 韩业明, 邓永波, 郭长亮, 付强. 基于超构透镜的微型头戴式荧光显微镜设计[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0237
ZHANG Zhi-miao, WANG Cheng-miao, XIE Mian, LIN Yu, HAN Ye-ming, DENG Yong-bo, GUO Chang-liang, FU Qiang. Design of miniature head-mounted fluorescence microscope based on metalens[J]. Chinese Optics. doi: 10.37188/CO.2023-0237
Citation: ZHANG Zhi-miao, WANG Cheng-miao, XIE Mian, LIN Yu, HAN Ye-ming, DENG Yong-bo, GUO Chang-liang, FU Qiang. Design of miniature head-mounted fluorescence microscope based on metalens[J]. Chinese Optics. doi: 10.37188/CO.2023-0237

基于超构透镜的微型头戴式荧光显微镜设计

doi: 10.37188/CO.2023-0237
基金项目: 中国科学院青年创新促进会资助(No. 2021221);吉林省科技发展计划青年成长科技计划项目(No. 20210508054RQ)
详细信息
    作者简介:

    张智淼(1999—),男,吉林长春人,硕士研究生,2021年于长春理工大学获得学士学位,主要从事光学系统设计方面的研究。E-mail:zhimiaozhang@qq.com

    谢 冕(2000—),女,江苏南京人,博士研究生,2022年于东南大学获得生物医学工程学士学位,主要从事穿戴式微型化显微镜等方面的研究。E-mail:cxiemian@outlook.com

    付 强(1985—),男,黑龙江佳木斯人,博士,副研究员,2008 年、2010 年于哈尔滨工业大学分别获得学士、硕士学位,2020 年于中国科学院大学获得博士学位,主要从事光学系统设计、红外探测设备总体论证等方面的研究。E-mail:fuqianghit@163.com

  • 中图分类号: TH742;R318.51

Design of miniature head-mounted fluorescence microscope based on metalens

Funds: Supported by Youth Innovation Promotion Association, CAS (No. 2021221);Youth Growth Science and Technology Program of Jilin Province Science and Technology Development Plan (No. 20210508054RQ).
More Information
  • 摘要:

    微型头戴式荧光显微镜可以对自由移动活体动物大脑中的神经活动进行实时成像,是近些年兴起的脑科学研究新仪器。然而,目前大多数微型荧光显微镜为了做到更小化、更轻便,视场都比较小。这使得可用于观测的神经细胞数量受限,虽然有大视场系统的报道,但重量都比较大,对动物的自由行为会产生一定的影响。为了在提高微型荧光显微镜成像性能同时降低其重量,本文光学系统采用超轻、超薄、成像质量高的超构透镜。推导了双曲相位超构透镜的像差公式,并以此为指导,完成了一款视场为4 mm×4 mm、NA为0.14的微型荧光显微镜设计,实现了7种初级像差的校正。装配完成的样机重量仅为4.11 g,全视场范围内分辨率为7.8 μm,对自由移动小鼠大脑中的神经活动进行成像观测能够达到单细胞分辨率。

     

  • 图 1  计算双曲相位超构透镜离轴像差的光路图

    Figure 1.  Optical path to calculate the off-axis aberration of the metalens with hyperbolic phase

    图 2  光阑到超构透镜的距离Lf /2时的OPD曲线

    Figure 2.  OPD curve when the distance from the stop to the metalens L is f /2

    图 3  对称放置的超构透镜成像系统

    Figure 3.  Optical system with two metalenses symmetrically placed

    图 4  优化后的光学系统

    Figure 4.  Optimized optical system

    图 5  光学系统的调制传递函数

    Figure 5.  MTF of the optical system

    图 6  光学系统的点列图

    Figure 6.  Spot diagram of the optical system

    图 7  光学系统的畸变曲线

    Figure 7.  Distortion curves of the optical system

    图 8  光学系统的场曲和像散曲线

    Figure 8.  Field and astigmatic curves of the optical system

    图 9  同心纳米环超构透镜示意图

    Figure 9.  Schematic diagram of concentric-nanoring metalens

    图 10  超构透镜的最小线宽

    Figure 10.  Minimum linewidth of a metalens

    图 11  超构透镜的加工流程图

    Figure 11.  Fabrication flow chart of the metalens

    图 12  超构透镜的局部SEM图像

    Figure 12.  The local SEM image of metalens

    图 13  光机结构设计结果

    Figure 13.  The optical mechanical structure design

    图 14  组装完成的微型荧光显微镜

    Figure 14.  Assembled miniature fluorescence microscope

    图 15  整机性能测试平台

    Figure 15.  The performance test platform for the system

    图 16  光学系统中心视场的分辨率测试结果

    Figure 16.  The resolution of the central field of view of the optical system

    图 17  光学系统边缘视场的分辨率测试结果

    Figure 17.  The resolution of the edge field of view of the optical system

    图 18  光学系统的畸变测试结果

    Figure 18.  Distortion of the optical system

    表  1  光学系统设计参数

    Table  1.   Optical system design parameters

    参数 指标要求
    波段 512 nm~537 nm
    数值孔径 0.14
    视场 4 mm×4 mm
    系统放大率
    下载: 导出CSV

    表  2  图像传感器参数

    Table  2.   Parameters of image sensor

    光学格式/in 像素尺寸/μm 成像区域尺寸/mm 分辨率
    1/2.5(4:3) 2.2 5.70 × 4.28 2592 × 1944
    下载: 导出CSV
  • [1] GRIENBERGER C, KONNERTH A. Imaging calcium in neurons[J]. Neuron, 2012, 73(5): 862-885. doi: 10.1016/j.neuron.2012.02.011
    [2] YU H, SENARATHNA J, TYLER B M, et al. Miniaturized optical neuroimaging in unrestrained animals[J]. NeuroImage, 2015, 113: 397-406. doi: 10.1016/j.neuroimage.2015.02.070
    [3] CHEN SH Y, WANG Z CH, ZHANG D, et al. Miniature fluorescence microscopy for imaging brain activity in freely-behaving animals[J]. Neuroscience Bulletin, 2020, 36(10): 1182-1190. doi: 10.1007/s12264-020-00561-z
    [4] 付强, 张智淼, 赵尚男, 等. 微型头戴式单光子荧光显微成像技术研究进展[J]. 中国光学,2023,16(5):1010-1021. doi: 10.37188/CO.2023-0007

    FU Q, ZHANG ZH M, ZHAO SH N, et al. Research progress of miniature head-mounted single photon fluorescence microscopic imaging technique[J]. Chinese Optics, 2023, 16(5): 1010-1021. (in Chinese). doi: 10.37188/CO.2023-0007
    [5] RYNES M L, SURINACH D A, LINN S, et al. Miniaturized head-mounted microscope for whole-cortex mesoscale imaging in freely behaving mice[J]. Nature Methods, 2021, 18(4): 417-425. doi: 10.1038/s41592-021-01104-8
    [6] GHOSH K K, BURNS L D, COCKER E D, et al. Miniaturized integration of a fluorescence microscope[J]. Nature Methods, 2011, 8(10): 871-878. doi: 10.1038/nmeth.1694
    [7] CAI D J, AHARONI D, SHUMAN T, et al. A shared neural ensemble links distinct contextual memories encoded close in time[J]. Nature, 2016, 534(7605): 115-118. doi: 10.1038/nature17955
    [8] LIBERTI W A, PERKINS L N, LEMAN D P, et al. An open source, wireless capable miniature microscope system[J]. Journal of Neural Engineering, 2017, 14(4): 045001. doi: 10.1088/1741-2552/aa6806
    [9] SKOCEK O, NÖBAUER T, WEILGUNY L, et al. High-speed volumetric imaging of neuronal activity in freely moving rodents[J]. Nature Methods, 2018, 15(6): 429-432. doi: 10.1038/s41592-018-0008-0
    [10] JACOB A D, RAMSARAN A I, MOCLE A J, et al. A compact head-mounted endoscope for in vivo calcium imaging in freely behaving mice[J]. Current Protocols in Neuroscience, 2018, 84(1): e51. doi: 10.1002/cpns.51
    [11] AHARONI D, KHAKH B S, SILVA A J, et al. All the light that we can see: a new era in miniaturized microscopy[J]. Nature Methods, 2019, 16(1): 11-13. doi: 10.1038/s41592-018-0266-x
    [12] BAGRAMYAN A. Lightweight 1-photon miniscope for imaging in freely behaving animals at subcellular resolution[J]. IEEE Photonics Technology Letters, 2020, 32(15): 909-912. doi: 10.1109/LPT.2020.3004283
    [13] DE GROOT A, VAN DEN BOOM B J G, VAN GENDEREN R M, et al. NINscope, a versatile miniscope for multi-region circuit investigations[J]. eLife, 2020, 9: e49987. doi: 10.7554/eLife.49987
    [14] YANNY K, ANTIPA N, LIBERTI W, et al. Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy[J]. Light:Science & Applications, 2020, 9: 171.
    [15] SHUMAN T, AHARONI D, CAI D J, et al. Breakdown of spatial coding and interneuron synchronization in epileptic mice[J]. Nature Neuroscience, 2020, 23(2): 229-238. doi: 10.1038/s41593-019-0559-0
    [16] BAGRAMYAN A, TABOURIN L, RASTQAR A, et al. Focus-tunable microscope for imaging small neuronal processes in freely moving animals[J]. Photonics Research, 2021, 9(7): 1300. doi: 10.1364/PRJ.418154
    [17] WANG Y ZH, MA ZH T, LI W ZH, et al. Cable-free brain imaging for multiple free-moving animals with miniature wireless microscopes[J]. Journal of Biomedical Optics, 2023, 28(2): 026503.
    [18] SCOTT B B, THIBERGE S Y, GUO C Y, et al. Imaging cortical dynamics in GCaMP transgenic rats with a head-mounted widefield macroscope[J]. Neuron, 2018, 100(5): 1045-1058. e5.
    [19] GUO CH L, BLAIR G J, SEHGAL M, et al. Miniscope-LFOV: a large-field-of-view, single-cell-resolution, miniature microscope for wired and wire-free imaging of neural dynamics in freely behaving animals[J]. Science Advances, 2023, 9(16): 3918-3918. doi: 10.1126/sciadv.adg3918
    [20] XU B B, LI H M, GAO SH L, et al. Metalens-integrated compact imaging devices for wide-field microscopy[J]. Advanced Photonics, 2020, 2(6): 066004.
    [21] TSENG E, COLBURN S, WHITEHEAD J, et al. Neural Nano-optics for high-quality thin lens imaging[J]. Nature Communications, 2021, 12(1): 6493. doi: 10.1038/s41467-021-26443-0
    [22] LIU Y, YU Q Y, CHEN Z M, et al. Meta-objective with sub-micrometer resolution for microendoscopes[J]. Photonics Research, 2021, 9(2): 106-115. doi: 10.1364/PRJ.406197
    [23] AIETA F, GENEVET P, KATS M, et al. Aberrations of flat lenses and aplanatic metasurfaces[J]. Optics Express, 2013, 21(25): 31530-31539. doi: 10.1364/OE.21.031530
    [24] YOUNG M. Zone plates and their aberrations[J]. Journal of the Optical Society of America, 1972, 62(8): 972-976. doi: 10.1364/JOSA.62.000972
    [25] GROSS H. Handbook of Optical Systems (Volume 3: Aberration Theory and Correction of Optical Systems)[M]. Weinheim: John Wiley & Sons Inc, 2007.
    [26] WANG CH M, LIN Y, HAN Y M, et al. Fabricable concentric-ring metalens with high focusing efficiency based on two-dimensional subwavelength unit splicing[J]. Optics Express, 2023, 31(20): 33596-33607. doi: 10.1364/OE.500688
    [27] JIN ZH, LIN Y, WANG CH M, et al. Topologically optimized concentric-nanoring metalens with 1 mm diameter, 0.8 NA and 600 nm imaging resolution in the visible[J]. Optics Express, 2023, 31(6): 10489-10499. doi: 10.1364/OE.478680
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  33
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-27
  • 录用日期:  2024-02-06
  • 网络出版日期:  2024-03-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!