留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于实虚交替导频的CO-OFDM-OQAM通信系统激光器相位噪声抑制方法

赵航宇 王道斌 张硕 黄全盛 温坤 李广富 元丽华

赵航宇, 王道斌, 张硕, 黄全盛, 温坤, 李广富, 元丽华. 基于实虚交替导频的CO-OFDM-OQAM通信系统激光器相位噪声抑制方法[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0230
引用本文: 赵航宇, 王道斌, 张硕, 黄全盛, 温坤, 李广富, 元丽华. 基于实虚交替导频的CO-OFDM-OQAM通信系统激光器相位噪声抑制方法[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0230
ZHAO Hang-yu, WANG Dao-bin, ZHANG Shuo, HUANG Quan-sheng, WEN Kun, LI Guang-fu, YUAN Li-hua. Laser phase noise suppression method for a CO- OFDM-OQAM communication system with real-imaginary-alternate pilots[J]. Chinese Optics. doi: 10.37188/CO.2023-0230
Citation: ZHAO Hang-yu, WANG Dao-bin, ZHANG Shuo, HUANG Quan-sheng, WEN Kun, LI Guang-fu, YUAN Li-hua. Laser phase noise suppression method for a CO- OFDM-OQAM communication system with real-imaginary-alternate pilots[J]. Chinese Optics. doi: 10.37188/CO.2023-0230

基于实虚交替导频的CO-OFDM-OQAM通信系统激光器相位噪声抑制方法

doi: 10.37188/CO.2023-0230
基金项目: 国家自然科学基金(No. 62141505,No. 61367007);甘肃省自然科学基金(No. 20JR10RA154)
详细信息
    作者简介:

    赵航宇(1999—),男,陕西宝鸡人,硕士在读,2021年于西安石油大学获得学士学位,主要从事光纤多载波通信方面的研究。E-mail:z18791877583@163.com

    王道斌(1976—),男,甘肃兰州人,博士,副教授,硕士生导师,2012年毕业于北京邮电大学信息光子学与光通信国家重点实验室,获工学博士学位,主要从事光纤通信和微纳光子学方面的研究。E-mail:cougarlz@lut.edu.cn

  • 中图分类号: TN913.7

Laser phase noise suppression method for a CO- OFDM-OQAM communication system with real-imaginary-alternate pilots

Funds: Supported by National Natural Science Foundation of China (No. 62141505, No. 61367007); The Natural Science Foundation of Gansu Province (No. 20JR10RA154)
  • 摘要:

    针对偏移正交幅度调制的相干光正交频分复用(CO-OFDM-OQAM)通信系统,本文提出了一种基于实虚交替导频的相位噪声抑制算法。该算法利用激光器相位噪声的性质和固有虚部干扰(IMI)系数的对称性规律设计全新的实虚交替导频,结合线性拟合,能够准确估计每个频域符号的公共相位误差(CPE)。由于是在频域进行补偿,与时域相位噪声抑制算法相比较,计算复杂度大幅下降。我们搭建了有效速率为65 GBits/s的偏振复用CO-OFDM-OQAM系统的数值仿真平台,研究了不同激光器线宽和子载波个数下系统的传输性能,考察了所提方法对相位噪声的抑制效果。获得的结果证实:OSNR固定为25 dB,子载波总数为256、512和1024时,误码率达到FEC极限时所需要的线宽分别等于801.1、349和138.4 KHz。对于使用16-QAM调制格式、子载波个数为256或512的系统,能较好补偿激光器相位噪声,而且不会影响功率峰均比。

     

  • 图 1  OFDM-OQAM系统中信号受激光器线宽的影响。(a)线宽为0;(b)线宽为0.1 MHz;(c)线宽为0.2 MHz;(d)线宽为0.3 MHz;(e)线宽为0.5 MHz;(f)线宽为1 MHz

    Figure 1.  The signal in the OFDM-OQAM system is affected by the laser linewidth. (a) the line width is 0; (b) 0.1 MHz; (c) 0.2 MHz; (d) 0.3 MHz; (e) 0.5 MHz; (f) 1 MHz

    图 2  本文提出的相位噪声补偿方法导频结构图

    Figure 2.  The pilot structure diagram of the phase noise compensation method proposed in this paper

    图 3  在导频中载入的AM信号

    Figure 3.  The AM signal loaded in the pilot

    图 4  本文所提相位噪声补偿算法流程图

    Figure 4.  The flowchart of the phase noise compensation algorithm presented in this article

    图 5  PDM CO-OFDM-OQAM系统原理示意图,插图显示了它的光谱和补偿流程

    Figure 5.  Schematic diagram of PDM CO-OFDM-OQAM system, the insets show its optical spectra and compensation process

    图 6  子载波数为256,光背靠背时,不同激光器线宽的误码率性能

    Figure 6.  The subcarrier number is 256, and the bit error rate performance of different laser linewidths when light is back-to-back

    图 7  子载波数为512,光背靠背时,不同激光器线宽的误码率性能

    Figure 7.  The subcarrier number is 512, and the bit error rate performance of different laser linewidths when light is back-to-back

    图 8  OSNR为25 dB,光背靠背时,本方法在不同子载波数目下的误码率性能

    Figure 8.  OSNR is 25 dB, and the bit error rate performance of this method under different subcarrier numbers is performed back-to-back

    图 9  不同导频组数目对误码率性能的影响

    Figure 9.  The influence of different pilot groups on bit error rate performance

    图 10  验证本文所提方法的实验方案图,AWG代表任意波形发生器,I代表同相分量,Q代表正交分量,DSO代表高速数字存储示波器,ECL代表外腔激光器。

    Figure 10.  Experimental scheme to validate the method proposed in this paper, AWG Arbitrary Waveform Generator, I In-phase, Q quadrature, DSO digital storage oscilloscope, ECL External Cavity Laser.

  • [1] XIANG B Q, LI F. Joint cancellation of phase noise and clipping noise for OFDM[J]. IEEE Transactions on Vehicular Technology, 2023, 72(2): 1806-1814. doi: 10.1109/TVT.2022.3207622
    [2] HU SH CH, KANG K, WANG H F, et al. Low complexity blind detection in OFDM systems with phase noise[J]. Digital Signal Processing, 2022, 129: 103638. doi: 10.1016/j.dsp.2022.103638
    [3] 徐宪莹, 岳殿武. 可见光通信中正交频分复用调制技术[J]. 中国光学,2021,14(3):516-527. doi: 10.37188/CO.2020-0051

    XU X Y, YUE D W. Orthogonal frequency division multiplexing modulation techniques in visible light communication[J]. Chinese Optics, 2021, 14(3): 516-527. (in Chinese). doi: 10.37188/CO.2020-0051
    [4] KESKIN M F, WYMEERSCH H, KOIVUNEN V. Monostatic sensing with OFDM under phase noise: from mitigation to exploitation[J]. IEEE Transactions on Signal Processing, 2023, 71: 1363-1378. doi: 10.1109/TSP.2023.3266976
    [5] DODANE D, SANTACRUZ J P, BOURDERIONNET J, et al. Optical phase-locked loop phase noise in 5G mm-wave OFDM ARoF systems[J]. Optics Communications, 2023, 526: 128872. doi: 10.1016/j.optcom.2022.128872
    [6] XUE ZH J, LI SH Y, LI J D, et al. OFDM radar and communication joint system using opto-electronic oscillator with phase noise degradation analysis and mitigation[J]. Journal of Lightwave Technology, 2022, 40(13): 4101-4109. doi: 10.1109/JLT.2022.3156573
    [7] 管海军, 刘云清, 张凤晶. 基于数字相位恢复算法的正交相移键控自由空间相干光通信系统[J]. 中国光学,2019,12(5):1131-1138. doi: 10.3788/co.20191205.1131

    GUAN H J, LIU Y Q, ZHANG F J. Coherent free-space optical communication system with quadrature phase-shift keying modulation using a digital phase recovery algorithm[J]. Chinese Optics, 2019, 12(5): 1131-1138. (in Chinese). doi: 10.3788/co.20191205.1131
    [8] SREEDHAR T V S, MEHTA N B. Inter-numerology interference in mixed numerology OFDM systems in time-varying fading channels with phase noise[J]. IEEE Transactions on Wireless Communications, 2023, 22(8): 5473-5485. doi: 10.1109/TWC.2023.3234363
    [9] KESKIN M F, MARCUS C, ERIKSSON O, et al. On the impact of phase noise on monostatic sensing in OFDM ISAC systems[C]. 2023 IEEE Radar Conference (RadarConf23), IEEE, 2023: 1-6.
    [10] SREEDHAR T V S, MEHTA N B. Refined bounds for inter-carrier interference in OFDM due to time-varying channels and phase noise[J]. IEEE Wireless Communications Letters, 2022, 11(12): 2522-2526. doi: 10.1109/LWC.2022.3207322
    [11] ALAGHBARI K A, LIM H S, AZIZ N H A, et al. Design and validation of the physical layer functions of FBMC/OQAM transceiver with improved residual phase error correction[J]. IEEE Access, 2022, 10: 97381-97393. doi: 10.1109/ACCESS.2022.3205405
    [12] NGUYEN T H, LOUVEAUX J, GORZA S P, et al. Simple feedforward carrier phase estimation for optical FBMC/OQAM systems[J]. IEEE Photonics Technology Letters, 2016, 28(24): 2823-2826. doi: 10.1109/LPT.2016.2623946
    [13] FICKERS J, GHAZISAEIDI A, SALSI M, et al. Multicarrier offset-QAM for Long-Haul coherent optical communications[J]. Journal of Lightwave Technology, 2014, 32(24): 4671-4678. doi: 10.1109/JLT.2014.2361617
    [14] TANG H Y, XIANG M, FU S N, et al. Feed-forward carrier phase recovery for offset-QAM Nyquist WDM transmission[J]. Optics Express, 2015, 23(5): 6215-6227. doi: 10.1364/OE.23.006215
    [15] LU J N, FU S N, TANG H Y, et al. Vertical blind phase search for low-complexity carrier phase recovery of offset-QAM Nyquist WDM transmission[J]. Optics Communications, 2017, 382: 212-218. doi: 10.1016/j.optcom.2016.07.083
    [16] FANG X, ZHANG F. Phase noise estimation and suppression for PDM CO-OFDM/OQAM systems[J]. Journal of Lightwave Technology, 2017, 35(10): 1837-1846. doi: 10.1109/JLT.2017.2665464
    [17] NGUYEN T T, LE S T, NISSEL R, et al. Pseudo-pilot coding based phase noise estimation for coherent optical FBMC-OQAM transmissions[J]. Journal of Lightwave Technology, 2018, 36(14): 2859-2867. doi: 10.1109/JLT.2018.2823335
    [18] YOU B Y, YANG L, LUO F G, et al. Joint carrier frequency offset and phase noise estimation based on pseudo-pilot in CO-FBMC/OQAM system[J]. IEEE Photonics Journal, 2019, 11(1): 7201611.
    [19] NGUYEN T H, PEUCHERET C. Kalman filtering for carrier phase recovery in optical offset-QAM Nyquist WDM systems[J]. IEEE Photonics Technology Letters, 2017, 29(12): 1019-1022. doi: 10.1109/LPT.2017.2701907
    [20] WANG X B, YANG L, LUO F G, et al. Adaptive EKF based estimation method for phase noise in CO-OFDM/OQAM system[J]. IEEE Access, 2020, 8: 204931-204940. doi: 10.1109/ACCESS.2020.3037312
  • 加载中
图(10)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  31
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-20
  • 录用日期:  2024-02-29
  • 网络出版日期:  2024-04-02

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!