留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于高压测量的MEMS硅-玻光纤FP压力传感器

付雨薇 王睿楠 唐文婷 杜喜昭 王伟 陈海滨

付雨薇, 王睿楠, 唐文婷, 杜喜昭, 王伟, 陈海滨. 用于高压测量的MEMS硅-玻光纤FP压力传感器[J]. 中国光学(中英文), 2024, 17(4): 771-779. doi: 10.37188/CO.2023-0224
引用本文: 付雨薇, 王睿楠, 唐文婷, 杜喜昭, 王伟, 陈海滨. 用于高压测量的MEMS硅-玻光纤FP压力传感器[J]. 中国光学(中英文), 2024, 17(4): 771-779. doi: 10.37188/CO.2023-0224
FU Yu-wei, WANG Rui-nan, TANG Wen-ting, DU Xi-zhao, WANG Wei, CHEN Hai-bin. MEMS silicon-glass fiber-optic FP pressure sensor for high-pressure measurements[J]. Chinese Optics, 2024, 17(4): 771-779. doi: 10.37188/CO.2023-0224
Citation: FU Yu-wei, WANG Rui-nan, TANG Wen-ting, DU Xi-zhao, WANG Wei, CHEN Hai-bin. MEMS silicon-glass fiber-optic FP pressure sensor for high-pressure measurements[J]. Chinese Optics, 2024, 17(4): 771-779. doi: 10.37188/CO.2023-0224

用于高压测量的MEMS硅-玻光纤FP压力传感器

doi: 10.37188/CO.2023-0224
基金项目: 陕西省重点研发计划(No. 2023-GHZD-52);陕西省教育厅重点研究计划(No. 22JY026)
详细信息
    作者简介:

    陈海滨(1981—),男,山东昌邑人,博士,副教授,博士生导师,主要从事光电探测及光纤传感技术方面的研究。E-mail:chenhaibin@xatu.edu.cn

  • 中图分类号: TP212

MEMS silicon-glass fiber-optic FP pressure sensor for high-pressure measurements

Funds: Supported by Key Research and Development Project of Shaanxi Province (No. 2023-GHZD-52); Key Research Programs of Shaanxi Provincial Education Department (No. 22JY026)
More Information
  • 摘要:

    研究了一种基于微机电系统(MEMS)技术用于高压测量的硅-玻光纤法布里-珀罗(FP)压力传感器。该传感器以硅材料作为敏感元件,将电感耦合等离子体(ICP)干法刻蚀后的单晶硅膜片和高硼硅玻璃阳极键合构成FP腔。传感头使用MEMS技术批量制造,结构稳定、抗过载能力强、在高压环境下不容易失效。实验结果表明,该传感器能够实现30 MPa的高压压力测量,灵敏度为46.94 nm/MPa,线性拟合度为0.99897,测量结果具有较好的一致性和可靠性,所设计的压力传感器在高压检测方面有很强的应用前景。

     

  • 图 1  光纤FP压力传感器结构示意图

    Figure 1.  Schematic diagram of fiber-optic FP pressure sensor

    图 2  膜片形变分布三维图

    Figure 2.  Three-dimensional diagram of diaphragm deformation distribution

    图 3  不同膜厚条件下膜片中心形变量与有效半径关系

    Figure 3.  Relationship between diaphragm center deformation and effective radius at different diaphragm thicknesses

    图 4  压力敏感结构模型三维受压图

    Figure 4.  Three-dimensional diagram of the pressure sensitive structure model under pressure

    图 5  压力敏感结构模型受压形变图

    Figure 5.  Deformation varying with pressure for pressure-sensitive structural model

    图 6  传感头制作工艺流程图

    Figure 6.  Flow chart of sensor head production process

    图 7  单个传感头

    Figure 7.  Single sensor head

    图 8  传感器实物图

    Figure 8.  Physical photograph of the sensor

    图 9  压力测试系统

    Figure 9.  Pressure testing system

    图 10  传感器反射光谱

    Figure 10.  Reflection spectrum of the sensor

    图 11  腔长与压力关系实测结果

    Figure 11.  Experimental results of relationship between the cavity length and pressure

    图 12  传感器重复性与稳定性

    Figure 12.  Repeatability and stability of the sensor

    表  1  传感器的参数

    Table  1.   Sensor parameters

    SensorParameterValue
    Silicon diaphragmEffective radius0.375 mm
    Thickness0.1 mm
    Glass substrateThickness0.4 mm
    Sensor headSide length2.5 mm
    下载: 导出CSV
  • [1] QI X G, WANG SH, JIANG J F, et al. Fiber optic Fabry-Perot pressure sensor with embedded MEMS micro-cavity for ultra-high pressure detection[J]. Journal of Lightwave Technology, 2019, 37(11): 2719-2725. doi: 10.1109/JLT.2018.2876717
    [2] 吴妮珊, 夏历. 基于微波光子学的准分布式光纤传感解调技术[J]. 中国光学,2021,14(2):245-263. doi: 10.37188/CO.2020-0121

    WU N SH, XIA L. Interrogation technology for quasi-distributed optical fiber sensing systems based on microwave photonics[J]. Chinese Optics, 2021, 14(2): 245-263. (in Chinese). doi: 10.37188/CO.2020-0121
    [3] CUI Y, JIANG Y, LIU T M, et al. A dual-cavity Fabry–Perot interferometric fiber-optic sensor for the simultaneous measurement of high-temperature and high-gas-pressure[J]. IEEE Access, 2020, 8: 80582-80587. doi: 10.1109/ACCESS.2020.2991551
    [4] 李爱武, 单天奇, 国旗, 等. 光纤法布里-珀罗干涉仪高温传感器研究进展[J]. 中国光学(中英文),2022,15(4):609-624. doi: 10.37188/CO.2021-0219

    LI A W, SHAN T Q, GUO Q, et al. Research progress of optical fiber Fabry-Perot interferometer high temperature sensors[J]. Chinese Optics, 2022, 15(4): 609-624. (in Chinese). doi: 10.37188/CO.2021-0219
    [5] 薛兆康, 国旗, 刘善仁, 等. 油气井下光纤光栅温度压力传感器[J]. 中国光学,2021,14(5):1224-1230. doi: 10.37188/CO.2021-0008

    XUE ZH K, GUO Q, LIU SH R, et al. Fiber Bragg grating temperature and pressure sensor for oil and gas well[J]. Chinese Optics, 2021, 14(5): 1224-1230. (in Chinese). doi: 10.37188/CO.2021-0008
    [6] WANG Q, ZHANG L, SUN CH S, et al. Multiplexed fiber-optic pressure and temperature sensor system for down-hole measurement[J]. IEEE Sensors Journal, 2008, 8(11): 1879-1883. doi: 10.1109/JSEN.2008.2006253
    [7] MA J, JU J, JIN L, et al. A compact fiber-tip micro-cavity sensor for high-pressure measurement[J]. IEEE Photonics Technology Letters, 2011, 23(21): 1561-1563. doi: 10.1109/LPT.2011.2164060
    [8] WU CH, FU H Y, QURESHI K K, et al. High-pressure and high-temperature characteristics of a Fabry–Perot interferometer based on photonic crystal fiber[J]. Optics Letters, 2011, 36(3): 412-414. doi: 10.1364/OL.36.000412
    [9] LIU ZH Y, TSE M L V, WU CH, et al. Intermodal coupling of supermodes in a twin-core photonic crystal fiber and its application as a pressure sensor[J]. Optics Express, 2012, 20(19): 21749-21757. doi: 10.1364/OE.20.021749
    [10] LI J SH, JIA P G, FANG G CH, et al. Batch-producible all-silica fiber-optic Fabry–Perot pressure sensor for high-temperature applications up to 800 °C[J]. Sensors and Actuators A: Physical, 2022, 334: 113363. doi: 10.1016/j.sna.2022.113363
    [11] BRACE E, GHADERIAN S, GHANNOUM A, et al. Impact of support material deformation in MEMS bulk micromachined diaphragm pressure sensors[J]. Journal of Micromechanics and Microengineering, 2021, 31(5): 055001. doi: 10.1088/1361-6439/abedcb
    [12] 张亮亮, 胡腾江, 李村, 等. 适用于极端环境的MEMS传感器研究进展[J]. 无人系统技术,2021,4(5):15-22.

    ZHANG L L, HU T J, LI C, et al. Research progress of MEMS sensors applied in extreme environment[J]. Unmanned Systems Technology, 2021, 4(5): 15-22. (in Chinese).
    [13] YIN J D, LIU T G, JIANG J F, et al. Batch-producible fiber-optic Fabry–Perot sensor for simultaneous pressure and temperature sensing[J]. IEEE Photonics Technology Letters, 2014, 26(20): 2070-2073. doi: 10.1109/LPT.2014.2347055
    [14] GE Y X, CAI K J, WANG T T, et al. MEMS pressure sensor based on optical Fabry–Perot interference[J]. Optik, 2018, 165: 35-40. doi: 10.1016/j.ijleo.2018.03.112
    [15] 张韬杰, 江毅, 马维一. 一种高精细度MEMS光纤F-P压力传感器[J]. 激光与光电子学进展,2019,56(17):170625.

    ZHANG T J, JIANG Y, MA W Y. A high fineness optical fiber F-P pressure sensor based on MEMS[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170625. (in Chinese).
    [16] 梁晓波, 黄漫国, 刘德峰, 等. 全SiC结构高温压力传感器制备及测试[J]. 测控技术,2022,41(6):15-18,25.

    LIANG X B, HUANG M G, LIU D F, et al. Preparation and testing of high temperature pressure sensor with full SiC structure[J]. Measurement & Control Technology, 2022, 41(6): 15-18,25. (in Chinese).
    [17] 李加顺, 贾平岗, 王军, 等. 基于石英MEMS技术的光纤法布里-珀罗高温压力传感器[J]. 光子学报,2022,51(6):0606005. doi: 10.3788/gzxb20225106.0606005

    LI J SH, JIA P G, WANG J, et al. Silica-MEMS-based fiber-optic Fabry-Perot pressure sensor for high-temperature applications[J]. Acta Photonica Sinica, 2022, 51(6): 0606005. (in Chinese). doi: 10.3788/gzxb20225106.0606005
    [18] 胡振朋, 贾平岗, 钱江, 等. 蓝宝石高温光纤压力传感器的设计与仿真[J]. 传感技术学报,2021,34(1):1-7.

    HU ZH P, JIA P G, QIAN J, et al. Design and simulation of sapphire high temperature optical fiber pressure sensor[J]. Chinese Journal of Sensors and Actuators, 2021, 34(1): 1-7. (in Chinese).
    [19] 郁道银, 谈恒英. 工程光学[M]. 2版. 北京: 机械工业出版社, 2006.

    YU D Y, TAN H Y. Engineering Optics[M]. 2nd ed. Beijing: China Machine Press, 2006. (in Chinese).
    [20] 张璐, 柯少颖, 汪建元, 等. 硅基Ⅳ族材料外延生长及其发光和探测器件研究进展[J]. 中国科学: 物理学 力学 天文学,2021,51(3):030005.

    ZHANG L, KE SH Y, WANG J Y, et al. Research progress in the epitaxial growth of silicon-based group IV materials, and their light emitters and photodetectors[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2021, 51(3): 030005. (in Chinese).
    [21] CHEN H B, LIU J, ZHANG X X, et al. High-order harmonic-frequency cross-correlation algorithm for absolute cavity length interrogation of white-light fiber-optic Fabry-Perot sensors[J]. Journal of Lightwave Technology, 2020, 38(4): 953-960. doi: 10.1109/JLT.2019.2948214
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  66
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-18
  • 修回日期:  2024-01-18
  • 录用日期:  2024-04-15
  • 网络出版日期:  2024-05-10

目录

    /

    返回文章
    返回