留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进型Blinn遮蔽函数的目标材料表面可见光偏振反射研究

刘承麟 战俊彤 张肃 王超 付强 李英超 段锦 姜会林

刘承麟, 战俊彤, 张肃, 王超, 付强, 李英超, 段锦, 姜会林. 基于改进型Blinn遮蔽函数的目标材料表面可见光偏振反射研究[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0217
引用本文: 刘承麟, 战俊彤, 张肃, 王超, 付强, 李英超, 段锦, 姜会林. 基于改进型Blinn遮蔽函数的目标材料表面可见光偏振反射研究[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0217
LIU Cheng-lin, ZHAN Jun-tong, ZHANG Su, WANG Chao, FU Qiang, LI Ying-chao, DUAN Jin, JIANG Hui-lin. Research on visible polarized reflection of target material surface based on improved Blinn masking function[J]. Chinese Optics. doi: 10.37188/CO.2023-0217
Citation: LIU Cheng-lin, ZHAN Jun-tong, ZHANG Su, WANG Chao, FU Qiang, LI Ying-chao, DUAN Jin, JIANG Hui-lin. Research on visible polarized reflection of target material surface based on improved Blinn masking function[J]. Chinese Optics. doi: 10.37188/CO.2023-0217

基于改进型Blinn遮蔽函数的目标材料表面可见光偏振反射研究

doi: 10.37188/CO.2023-0217
基金项目: 国家自然科学基金(No. 62127813,No. 62375027);吉林省教育厅项目(No. JJKH20220738KJ);吉林省科技厅项目(No. 20230203029SF,No. 20210201093GX);重庆市自然科学基金(No. CSTB2023NSCO-MSX0504)
详细信息
    作者简介:

    战俊彤(1987—),女,吉林长春人,博士,副教授,2016年于长春理工大学获光学工程专业工学获得博士学位,主要从事偏振信息处理技术、目标偏振特性技术方面的研究。E-mail:zhanjuntong@cust.edu.cn

  • 中图分类号: O436.3

Research on visible polarized reflection of target material surface based on improved Blinn masking function

Funds: Supported by National Natural Science Foundation (No. 62127813, No. 62375027); Jilin Provincial Education Department (No. JJKH20220738KJ);
More Information
  • 摘要:

    为了研究典型目标材料表面的可见光偏振反射特性,本文针对传统“V”型表面结构缺陷,引入改进Blinn型阴影遮蔽函数,综合考虑镜面反射、漫反射和体散射的影响,建立了典型目标材料表面偏振六参量二向反射分布函数模型。对不同材料(聚丙烯塑料板、99氧化铝陶瓷板、铁板、绿漆铝板)目标样板进行可见光600 nm波段的偏振特性测试实验,并采用遗传算法进行参数反演。实验与仿真结果表明:与传统“V”型遮蔽模型相比,在入射角为50°,相对方位角为180°,0°~60°观测角对目标材料表面偏振特性的影响中,聚丙烯塑料板模型精度提升最大,RMSE百分比提升了70.61%;在入射角为50°,观测角为50°,DoLP随90°~270°相对方位角变化的过程中,与另两种参考模型相比,本模型精度至少提升了24.73%个百分点,线偏振度最小均方根误差值仅为1.29%。对于本文材料而言,偏振特性取决于其复折射率的值,当入射角确定,观测角为0°~60°,相对方位角在0°~360°内时,n/k比值越大,线偏振度峰值越大。在可见光波段,波长对线偏振度的影响不大。

     

  • 图 1  BRDF的几何关系图

    Figure 1.  Geometric relationship diagram of BRDF

    图 2  典型目标材料表面的光反射过程

    Figure 2.  Light reflection process on the surface of typical target materials

    图 3  改进Blinn型遮蔽函数原理图

    Figure 3.  Schematic diagram of improved Blinn type masking function

    图 4  BRDF测量装置实物图

    Figure 4.  Physical diagram of BRDF measuring device

    图 5  测试材料样品实物图

    Figure 5.  Physical image of tested material samples

    图 6  入射角为50°时,观测角对不同材料DoLP的影响

    Figure 6.  The effect of view angle on DoLP of different materials when the incident angle is 50°

    图 7  不同入射角下典型目标表面材料在2${\text{π}} $空间内的DoLP分布

    Figure 7.  DoLP distribution of typical target surface materials in 2${\text{π}} $ under different incident angles

    图 8  不同入射角下目标表面材料仿真值与实测值对比

    Figure 8.  Comparison between simulated and measured values of target surface materials at different incidence angles

    图 9  观测角与相对方位角对不同材料DoLP影响

    Figure 9.  Effect of observation angle and relative azimuth on DoLP of different materials

    图 10  入射角为50°、观测角为50°下,DoLP随相对方位角的变化曲线

    Figure 10.  DoLP variation curves with relative azimuth at an incident angle of 50° and an observation angle of 50°

    图 11  不同目标材料波长与线偏振度的关系曲线

    Figure 11.  Relationship curves between wavelength and degree of linear polarization of different target materials

    表  1  不同目标材料参数的反演结果

    Table  1.   Inversion results of different target material parameters

    样品 参数
    $ m$ $ k $ $ \sigma $ $ c $ ${\rho _0}$ ${R_\infty }$
    聚丙烯塑料板 1.471 0.698 0.325 0.552 0.517 0.6643
    99氧化铝陶瓷板 1.713 0.596 0.283 0.732 0.4885 0.467
    铁板 2.836 3.277 0.3612 0.485 0.568 0.6942
    绿漆铝板 1.318 0.335 0.227 0.906 0.3715 0.359
    下载: 导出CSV

    表  2  在入射角为50°,相对方位角为180°时,三种模型DoLP仿真值与实测值的均方根误差

    Table  2.   Root mean square error of DoLP simulation values and actual measurements for three models at an incident angle of 50° and a relative azimuth angle of 180°

    样品 RMSE1 RMSE2 RMSE3 百分比/%
    聚丙烯塑料板 0.0936 0.0486 0.0275 70.61%43.41%
    99氧化铝陶瓷板 0.0426 0.0274 0.0187 56.1%31.75%
    铁板 0.0504 0.0316 0.0223 55.75%29.43%
    绿漆铝板 0.0285 0.0188 0.0129 54.73%31.38%
    下载: 导出CSV

    表  3  在入射角60°,相对方位角180°时,三种模型DoLP仿真值与实测值的均方根误差

    Table  3.   Root mean square error of DoLP simulation values and actual measurements for three models at an incident angle of 60° and a relative azimuth angle of 180°

    样品RMSE1RMSE2RMSE3百分比/%
    聚丙烯
    塑料板
    0.08310.05480.031262.45%
    43.07%
    99氧化铝
    陶瓷板
    0.05730.03880.022860.21%
    41.23%
    铁板0.06420.04020.024653.89%
    38.81%
    绿漆铝板0.03680.02490.017851.63%
    28.51%
    下载: 导出CSV

    表  4  在入射角50°,观测角50°时,三种模型DoLP仿真值与实测值的均方根误差

    Table  4.   Root mean square error of DoLP simulation and measurement values for three models at an incident angle of 50° and an observation angle of 50°

    样品RMSE1RMSE2RMSE3百分比/%
    聚丙烯
    塑料板
    0.06130.04840.028952.85%
    40.29%
    99氧化铝
    陶瓷板
    0.04190.02950.021548.69%
    27.12%
    铁板0.03770.02810.019648.01%
    30.24%
    绿漆铝板0.02540.01820.013746.06%
    24.73%
    下载: 导出CSV
  • [1] 丰玉强, 杜泽旭, 胡正飞. 镍含量对激光熔覆镍钛合金涂层组织与性能的影响[J]. 中国激光,2022,49(8):0802022. doi: 10.3788/CJL202249.0802022

    FENG Y Q, DU Z X, HU ZH F. Influence of Ni content on microstructure and properties of NiTi alloy coatings fabricated by laser cladding[J]. Chinese Journal of Lasers, 2022, 49(8): 0802022. (in Chinese). doi: 10.3788/CJL202249.0802022
    [2] 李昊, 胡德骄, 秦飞, 等. 原子层厚度超表面光场调控原理及应用[J]. 中国光学,2021,14(4):851-866. doi: 10.37188/CO.2021-0069

    LI H, HU D J, QIN F, et al. Principle and application of metasurface optical field modulation of atomic layer thickness[J]. Chinese Optics, 2021, 14(4): 851-866. (in Chinese). doi: 10.37188/CO.2021-0069
    [3] 刘博韬, 陈勇, 帅斌财. 锆基合金包壳管保护涂层的材料、制备及特性[J]. 机电工程技术,2023,52(1):126-128,137. doi: 10.3969/j.issn.1009-9492.2023.01.030

    LIU B T, CHEN Y, SHUAI B C. Materials, preparation and properties of zirconium based alloy protective coatings for nuclear fuels[J]. Mechanical & Electrical Engineering Technology, 2023, 52(1): 126-128,137. (in Chinese). doi: 10.3969/j.issn.1009-9492.2023.01.030
    [4] 靳佩昕, 张兆栋, 马紫成, 等. 沉积路径对激光诱导MIG增材2319铝合金的影响[J]. 中国激光,2022,49(14):1402205. doi: 10.3788/CJL202249.1402205

    JIN P X, ZHANG ZH D, MA Z CH, et al. Effect of stacking path on laser induced MIG additive 2319 aluminum alloy[J]. Chinese Journal of Lasers, 2022, 49(14): 1402205. (in Chinese). doi: 10.3788/CJL202249.1402205
    [5] 付强, 闫磊, 谭双龙, 等. 轻小型金属基增材制造光学系统[J]. 中国光学(中英文),2022,15(5):1019-1028. doi: 10.37188/CO.2022-0128

    FU Q, YAN L, TAN SH L, et al. Light-and-small optical systems by metal-based additive manufacturing[J]. Chinese Optics, 2022, 15(5): 1019-1028. (in Chinese). doi: 10.37188/CO.2022-0128
    [6] 邓光晟, 陈文卿, 余振春, 等. 基于导电塑料膜的角度不敏感宽带超材料吸波体设计及制备[J]. 光学学报,2022,42(22):2216001. doi: 10.3788/AOS202242.2216001

    DENG G SH, CHEN W Q, YU ZH CH, et al. Design and preparation of angle-insensitive broadband metamaterial absorber based on conductive plastic film[J]. Acta Optica Sinica, 2022, 42(22): 2216001. (in Chinese). doi: 10.3788/AOS202242.2216001
    [7] TOBIN R, HALIMI A, MCCARTHY A, et al. Long-range depth profiling of camouflaged targets using single-photon detection[J]. Optical Engineering, 2018, 57(3): 031303.
    [8] 段锦, 付强, 莫春和, 等. 国外偏振成像军事应用的研究进展(上)[J]. 红外技术,2014,36(3):190-195. doi: 10.11846/j.issn.1001_8891.201403003

    DUAN J, FU Q, MO CH H, et al. Review of polarization imaging technology for international military application I[J]. Infrared Technology, 2014, 36(3): 190-195. (in Chinese). doi: 10.11846/j.issn.1001_8891.201403003
    [9] 莫春和, 段锦, 付强, 等. 国外偏振成像军事应用的研究进展(下)[J]. 红外技术,2014,36(4):265-270. doi: 10.11846/j.issn.1001_8891.201404002

    MO CH H, DUAN J, FU Q, et al. Review of polarization imaging technology for international military application (II)[J]. Infrared Technology, 2014, 36(4): 265-270. (in Chinese). doi: 10.11846/j.issn.1001_8891.201404002
    [10] PATTY C H L, TEN KATE I L, BUMA W J, et al. Circular spectropolarimetric sensing of vegetation in the field: possibilities for the remote detection of extraterrestrial life[J]. Astrobiology, 2019, 19(10): 1221-1229. doi: 10.1089/ast.2019.2050
    [11] 王炫力, 刘爽, 谢敏, 等. 铈掺杂Y3Al5O12热障涂层陶瓷材料的制备与性能研究[J]. 中国稀土学报,2023,41(6):1119-1125.

    WANG X L, LIU SH, XIE M, et al. Preparation and properties of cerium doped Y3Al5O12 thermal barrier coating ceramic materials[J]. Journal of the Chinese Society of Rare Earths, 2023, 41(6): 1119-1125. (in Chinese).
    [12] 吴玉茵, 卜铁伟, 王真. 多波段伪装隐身涂层织物的制备研究与应用[J]. 化工新型材料,2021,49(3):248-251.

    WU Y Y, BU T W, WANG ZH. Research on preparation and application of multi band camouflage coating fabric[J]. New Chemical Materials, 2021, 49(3): 248-251. (in Chinese).
    [13] 马王杰慧, 刘彦磊, 陈志影, 等. 变温下材料表面近红外双向反射分布函数的测量研究[J]. 中国光学,2020,13(5):1115-1123. doi: 10.37188/CO.2019-0256

    MA W J H, LIU Y L, CHEN ZH Y, et al. Near-infrared BRDF of material surfaces at varying temperatures[J]. Chinese Optics, 2020, 13(5): 1115-1123. (in Chinese). doi: 10.37188/CO.2019-0256
    [14] VOSCHULA I V, DLUGUNOVICH V A, ZHUMAR A Y. Bidirectional reflectance distribution function of thermal control coatings and heat-shielding materials illuminated by polarized light[J]. Journal of Applied Spectroscopy, 2013, 80(2): 197-204. doi: 10.1007/s10812-013-9745-0
    [15] RENHORN I G E, HALLBERG T, BOREMAN G D. Efficient polarimetric BRDF model[J]. Optics Express, 2015, 23(24): 31253-31273. doi: 10.1364/OE.23.031253
    [16] 高明, 宋冲, 巩蕾. 基于偏振双向反射分布函数的粗糙面光散射偏振特性研究[J]. 中国激光,2013,40(12):1213002. doi: 10.3788/CJL201340.1213002

    GAO M, SONG CH, GONG L. Analysis of polarization characteristics about rough surface light scattering based on polarized bidirectional reflectance distribution function[J]. Chinese Journal of Lasers, 2013, 40(12): 1213002. (in Chinese). doi: 10.3788/CJL201340.1213002
    [17] 杨敏, 方勇华, 吴军, 等. 基于Kubelka-Munk理论的涂层表面多参量偏振双向反射分布函数模型[J]. 光学学报,2018,38(1):0126002. doi: 10.3788/AOS201838.0126002

    YANG M, FANG Y H, WU J, et al. Multiple-component polarized bidirectional reflectance distribution function model for painted surfaces based on Kubelka-Munk theory[J]. Acta Optica Sinica, 2018, 38(1): 0126002. (in Chinese). doi: 10.3788/AOS201838.0126002
    [18] NICODEMUS F E, RICHMOND J C, HSIA J J, et al. Geometrical Considerations and Nomenclature for Reflectance[M]. Washington: U. S. Department of Commerce, National Bureau of Standards, 1977: 1-7.
    [19] PRIEST R G, GERMER T A. Polarimetric BRDF in the microfacet model: theory and measurements[C]. Proceedings of the 2000 Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors, Infrared Information Analysis Center, 2000, 1: 169-181.
    [20] 刘宏, 朱京平, 王凯. 基于随机表面微面元理论的二向反射分布函数几何衰减因子修正[J]. 物理学报,2015,64(18):184213. doi: 10.7498/aps.64.184213

    LIU H, ZHU J P, WANG K. Modification of geometrical attenuation factor of bidirectional reflection distribution function based on random surface microfacet theory[J]. Acta Physica Sinica, 2015, 64(18): 184213. (in Chinese). doi: 10.7498/aps.64.184213
    [21] MINNAERT M. The reciprocity principle in lunar photometry[J]. The Astrophysical Journal, 1941, 93: 403-410. doi: 10.1086/144279
    [22] LE HORS L, HARTEMANN P, DOLFI D, et al. Phenomenological model of paints for multispectral polarimetric imaging[J]. Proceedings of SPIE, 2001, 4370: 94-105. doi: 10.1117/12.440065
    [23] 于婷, 战俊彤, 马莉莉, 等. 椭球形粒子浓度对激光偏振传输特性的影响[J]. 中国激光,2019,46(2):0208002. doi: 10.3788/CJL201946.0208002

    YU T, ZHAN J T, MA L L, et al. Effect of ellipsoidal particle concentration on laser polarization transmission characteristics[J]. Chinese Journal of Lasers, 2019, 46(2): 0208002. (in Chinese). doi: 10.3788/CJL201946.0208002
    [24] 韦顺. 红外偏振成像特性分析[D]. 西安: 西安电子科技大学, 2020.

    WEI SH. Analysis of infrared polarization imaging characteristics[D]. Xi’an: Xidian University, 2020. (in Chinese).
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  20
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 网络出版日期:  2024-05-08

目录

    /

    返回文章
    返回