留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹混频器噪声系数测量

陶星宇 刘文杰 孙粤辉 秦菲菲 宋青娥 赵泽宇 刘丽娟 陈天香 王云才

陶星宇, 刘文杰, 孙粤辉, 秦菲菲, 宋青娥, 赵泽宇, 刘丽娟, 陈天香, 王云才. 太赫兹混频器噪声系数测量[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0193
引用本文: 陶星宇, 刘文杰, 孙粤辉, 秦菲菲, 宋青娥, 赵泽宇, 刘丽娟, 陈天香, 王云才. 太赫兹混频器噪声系数测量[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0193
TAO Xing-yu, LIU Wen-jie, SUN Yue-hui, QIN Fei-fei, SONG Qing-e, ZHAO Ze-yu, LIU Li-juan, CHEN Tian-xiang, WANG Yun-cai. Terahertz mixer noise figure measurement[J]. Chinese Optics. doi: 10.37188/CO.2023-0193
Citation: TAO Xing-yu, LIU Wen-jie, SUN Yue-hui, QIN Fei-fei, SONG Qing-e, ZHAO Ze-yu, LIU Li-juan, CHEN Tian-xiang, WANG Yun-cai. Terahertz mixer noise figure measurement[J]. Chinese Optics. doi: 10.37188/CO.2023-0193

太赫兹混频器噪声系数测量

doi: 10.37188/CO.2023-0193
基金项目: 国家自然科学基金重大仪器专项(No. 61927811)
详细信息
    作者简介:

    陶星宇(1999—),男,河南信阳人,现为广东工业大学硕士研究生,2021年于湖北科技学院获得学士学位,主要从事光子毫米波噪声产生技术以及应用。E-mail:taoxingyu2021@163.com

    王云才(1965—),男,广东工业大学特聘教授,博士生导师,1986年本科毕业于南开大学电子科学系,1994年和1997年分别获得中科院西安光学精密机械研究所工学硕士和理学博士学位。主要从事混沌、随机数、噪声的产生、应用与研究。E-mail: wangyc@gdut.edu.cn

  • 中图分类号: TN209

Terahertz mixer noise figure measurement

Funds: Supported by the National Natural Science Foundation of China (No. 61927811)
More Information
  • 摘要:
    目的 

    噪声系数是评价高频电子器件传输信号性能的重要参数,随着工作频率的增加,高频电子器件的噪声系数通常会增大,现有噪声源的超噪比无法满足测量需求,为了实现高频电子器件噪声系数的测量。

    方法 

    基于非相干光混频技术,将三束非相干光耦合进入单行载流子光电二极管,研制了220~325 GHz高超噪比且可调谐的太赫兹光子噪声源,超噪比可调谐至45 dB。通过Y因子法将其应用于大噪声系数、负变频增益太赫兹混频器噪声系数的测量。

    结果 

    测量得到太赫兹混频器噪声系数的范围为16~32 dB,变频增益约为−13 dB,测量不确定度为0.43 dB。

    结论 

    研制的高超噪比且可调谐的太赫兹光子噪声源,能够满足大噪声系数太赫兹电子器件的测量需求,对太赫兹电子器件噪声系数的测量和指导器件的进一步优化有着重要的作用。

     

  • 图 1  光信号转换为电噪声信号的原理图

    Figure 1.  Schematic diagram of conversion of the optical signal to the electrical noise signal

    图 2  (a)噪声源原理图;(b) 噪声源实物图

    Figure 2.  (a) Schematic diagram of the noise source; (b) Physical diagram of the noise source

    图 3  超噪比与光电流的关系。(a)超噪比随光电流的变化趋势;(b)不同光电流对应超噪比的频谱

    Figure 3.  The relationship between the ENR and the photocurrent. (a) The trend of the ENR with photocurrent; (b) The spectrum of different photocurrents corresponding to the ENR

    图 4  噪声系数测量的装置图

    Figure 4.  NF measurement device diagram

    图 5  超噪比为20 dB、25 dB和30 dB时测得的功率谱

    Figure 5.  The power spectrum measured when the ENR is 20 dB, 25 dB, and 30 dB

    图 6  超噪比为35 dB、40 dB和45 dB时测量的噪声系数与增益

    Figure 6.  The NF and gain measured when the ENR is 35 dB, 40 dB, and 45 dB

    表  1  各物理量的值

    Table  1.   The value of each physical quantity

    物理量δENRδNF12δNF2δGdB
    计算值0.27 dB0.38 dB0.38 dB0.27 dB
    物理量F1F2F12G
    测量值285.681.73311.580.03
    下载: 导出CSV
  • [1] NIU ZH Q, ZHANG B, DAI B L, et al. 220 GHz multi circuit integrated front end based on solid-state circuits for high speed communication system[J]. Chinese Journal of Electronics, 2022, 31(3): 569-580. doi: 10.1049/cje.2021.00.295
    [2] MAIER D, REVERDY J, BILLON-PIERRON D, et al. Upgrade of EMIR's band 3 and band 4 mixers for the IRAM 30 m telescope[J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(2): 215-221. doi: 10.1109/TTHZ.2011.2180609
    [3] PAGNINI L, COLLODI G, CIDRONALI A. A GaN-HEMT active drain-pumped mixer for S-band FMCW radar front-end applications[J]. Sensors, 2023, 23(9): 4479. doi: 10.3390/s23094479
    [4] 梁伟军, 高秋来. WR28低温标准噪声源(英文)[J]. 科学技术与工程,2011,11(31):7672-7676,7681. doi: 10.3969/j.issn.1671-1815.2011.31.018

    LIANG W J, GAO Q L. A WR28 cryogenic standard noise source[J]. Science Technology and Engineering, 2011, 11(31): 7672-7676,7681. doi: 10.3969/j.issn.1671-1815.2011.31.018
    [5] FORSTÉN H, SAIJETS J H, KANTANEN M, et al. Millimeter-wave amplifier-based noise sources in SiGe BiCMOS technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(11): 4689-4696. doi: 10.1109/TMTT.2021.3104028
    [6] ZHAO R K, ZHANG ZH ZH, ZHANG Y, et al. Design and implementation of 50GHz-110GHz ultra-broadband noise source[C]. 2022 International Conference on Microwave and Millimeter Wave Technology, IEEE, 2022: 1-3.
    [7] FIORESE V, GONCALVES J C A, BOUVOT S, et al. A 140 GHz to 170 GHz active tunable noise source development in SiGe BiCMOS 55 nm technology[C]. 2021 16th European Microwave Integrated Circuits Conference, IEEE, 2021: 125-128.
    [8] GHANEM H, GONCALVES J C A, CHEVALIER P, et al. Modeling and analysis of a broadband schottky diode noise source up to 325 GHz based on 55-nm SiGe BiCMOS technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(6): 2268-2277. doi: 10.1109/TMTT.2020.2980513
    [9] 黄海碧, 刘文杰, 孙粤辉, 等. 高超噪比宽带毫米波噪声信号光子学产生研究[J]. 中国光学,2022,15(2):251-258. doi: 10.37188/CO.2021-0158

    HUANG H B, LIU W J, SUN Y H, et al. Photonics generation of broadband millimeter wave noise signals with high excess noise ratios[J]. Chinese Optics, 2022, 15(2): 251-258. (in Chinese). doi: 10.37188/CO.2021-0158
    [10] SUN Y H, CHEN Y X, LI P, et al. Flat millimeter-wave noise generation by optically mixing multiple wavelength-sliced ASE lights[J]. IEEE Photonics Technology Letters, 2021, 33(22): 1270-1273. doi: 10.1109/LPT.2021.3117022
    [11] VIDAL B. Broadband photonic microwave noise sources[J]. IEEE Photonics Technology Letters, 2020, 32(10): 592-594. doi: 10.1109/LPT.2020.2986739
    [12] LIU J B, LIU W J, SUN Y H, et al. Generation of broadband flat millimeter-wave white noise using rectangular ASE slices mixing[J]. Optics Communications, 2023, 530: 129106. doi: 10.1016/j.optcom.2022.129106
    [13] SONG H J, SHIMIZU N, KUKUTSU N, et al. Microwave photonic noise source from microwave to sub-terahertz wave bands and its applications to noise characterization[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(12): 2989-2997. doi: 10.1109/TMTT.2008.2007325
    [14] SONG H J, YAITA M. On-wafer noise measurement at 300 GHz using UTC-PD as noise source[J]. IEEE Microwave and Wireless Components Letters, 2014, 24(8): 578-580. doi: 10.1109/LMWC.2014.2324762
    [15] GHANEM H, LEPILLIET S, DANNEVILLE F, et al. 300-GHz intermodulation/noise characterization enabled by a single THz photonics source[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(10): 1013-1016. doi: 10.1109/LMWC.2020.3020817
    [16] KHAMAISI B, SOCHER E. A 230-310 GHz down converter with integrated local oscillator in 65 nm CMOS technology[C]. 9th European Microwave Integrated Circuits Conference, IEEE, 2014: 136-139.
    [17] HARA S, KATAYAMA K, TAKANO K, et al. A 32Gbit/s 16QAM CMOS receiver in 300GHz band[C]. 2017 IEEE MTT-S International Microwave Symposium, IEEE, 2017: 1703-1706.
    [18] OJEFORS E, HEINEMANN B, PFEIFFER U R. Subharmonic 220- and 320-GHz SiGe HBT receiver front-ends[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(5): 1397-1404. doi: 10.1109/TMTT.2012.2190092
    [19] 董建涛. Y-因子算法与噪声系数不确定度分析[J]. 国外电子测量技术,2009,28(3):28-30. doi: 10.3969/j.issn.1002-8978.2009.03.009

    DONG J T. Y-factor method and the analysis of NF uncertain[J]. Foreign Electronic Measurement Technology, 2009, 28(3): 28-30. (in Chinese). doi: 10.3969/j.issn.1002-8978.2009.03.009
    [20] 孙粤辉, 郭亚, 王云才, 等. 130~170 GHz平坦毫米波噪声信号产生技术[J]. 中国科学: 信息科学,2022,52(11):2155-2162.

    SUN Y H, GUO Y, WANG Y C, et al. Generation of 130-170 GHz flat millimeter-wave noise signal[J]. SCIENTIA SINICA Informationis, 2022, 52(11): 2155-2162. (in Chinese).
    [21] CHEN ZH, DENG J Q, WANG M, et al. Design of a novel 170GHz–260GHz sub-harmonic mixer based on planar Schottky diodes[C]. Proceedings of IEEE 9th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies, IEEE, 2016: 186-188.
    [22] 陈晓华. 3mm噪声系数测量系统[D]. 西安: 西安电子科技大学, 2009.

    CHEN X H. 3mm noise figure measurement system[D]. Xi’an: Xidian University, 2009. (in Chinese).
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  26
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 网络出版日期:  2024-04-30

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!