留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

调制转移光谱对激光频率起伏分辨率的影响因素及优化

王越伟 卢飞飞 侯晓凯 王军民

王越伟, 卢飞飞, 侯晓凯, 王军民. 调制转移光谱对激光频率起伏分辨率的影响因素及优化[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0191
引用本文: 王越伟, 卢飞飞, 侯晓凯, 王军民. 调制转移光谱对激光频率起伏分辨率的影响因素及优化[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0191
Wang Yue-wei, LU Fei-fei, HOU Xiao-kai, Wang Jun-min. The influence factors and optimization of modulation transfer spectroscopy for laser frequency discrimination with a cesium atomic vapor cell[J]. Chinese Optics. doi: 10.37188/CO.2023-0191
Citation: Wang Yue-wei, LU Fei-fei, HOU Xiao-kai, Wang Jun-min. The influence factors and optimization of modulation transfer spectroscopy for laser frequency discrimination with a cesium atomic vapor cell[J]. Chinese Optics. doi: 10.37188/CO.2023-0191

调制转移光谱对激光频率起伏分辨率的影响因素及优化

doi: 10.37188/CO.2023-0191
基金项目: 国家重点研发计划“物态调控”重点专项课题(No. 2021YFA1402002);国家自然科学基金面上项目(No. 11974226)
详细信息
    作者简介:

    王越伟(2001—),男,山西省柳林县人,博士研究生,主要从事冷原子物理、激光光谱技术及精密测量等方面的研究。E-mail:202312607025@email.sxu.edu.cn

    王军民(1967—),男,山西省河曲县人,理学博士,教授,光学专业和原子分子物理专业博士生导师,主要从事量子光学、冷原子物理及精密测量等方面的研究。E-mail:wwjjmm@sxu.edu.cn

  • 中图分类号: O433

The influence factors and optimization of modulation transfer spectroscopy for laser frequency discrimination with a cesium atomic vapor cell

Funds: Supported by The National Key R & D Program "State of Matter Regulation" is a key special project (No. 2021YFA1402002); National Natural Science Foundation of China (No.11974226)
More Information
  • 摘要:

    基于非线性近简并四波混频过程的调制转移光谱可以从根本上消除谱线的多普勒背景,且具有高灵敏度、高分辨率等优点,其类色散线型具有良好的鉴频特性,调制转移光谱在激光稳频方面具有广泛的应用。一束弱探测光与一束受到频率调制的强泵浦光在原子(分子)气室内相向传输,被调制的泵浦光其频率成分中有泵浦光中心频率以及经过调制产生的正负一阶边带。原子(分子)样品的三阶非线性效应可以产生近简并四波混频,泵浦光的频率调制可以转移到未调制的探测光上,并且这种调制转移仅在满足亚多普勒共振条件时发生。在本实验中,我们采用电光位相调制器对泵浦光进行位相调制,得到射频调制转移光谱 (MTS),并研究MTS光谱的类色散信号中心过零点斜率优化问题,利用MTS光谱信号进行激光稳频时,其信号幅度和过零点斜率越大,MTS光谱信号对激光频率起伏分辨率的灵敏度越高。通过改变泵浦光的调制频率,泵浦光与探测光的光斑大小,研究MTS光谱信号过零点斜率与二者之间的参数依赖关系,在泵浦光调制频率为~3.6 MHz(大约是自然线宽的0.69倍)时,得到最佳的MTS光谱信号。最后利用最优的MTS光谱,将DL Pro @ 852 nm 激光频率锁定到铯原子D2线(F = 4) − (F = 5’)循环跃迁,在60分钟采样时间内激光频率起伏约为170 kHz,与自由运转时激光器~11 MHz的频率起伏相比,激光器的频率起伏得到了显著改善。

     

  • 图 1  实验装置图。(a)铯原子气室饱和吸收光谱仪;(b)铯原子气室调制转移光谱仪。

    Figure 1.  Diagram of experimental setup. (a) Cesium atomic gas chamber saturation absorption spectrometer; (b) Cesium atomic gas chamber modulation transfer spectrometer. $ {\omega }_{m} $ is the modulation frequency, and$ {\omega }_{c} $ is the frequency of pump light. The upper and lower sidebands are at frequencies with $ {\omega }_{c}+{\omega }_{m} $ and $ {\omega }_{c}-{\omega }_{m} $. Key to figure: λ/2: half-wave plate; PMF: polarization maintaining fiber; PBS: polarization beam splitter cube; EOPM: polarization-maintaining-fiber pig-tailed electro-optic phase modulator; PZT: piezoelectric tranducer; Amp: amplifier; RF: radio frequency; PID: proportional-integral-differential amplifier.

    图 2  Cs原子饱和吸收谱与调制频率为3.6 MHz时典型的调制转移光谱。

    Figure 2.  The cesium saturated absorption spectroscopy (SAS) and the cesium modulation transfer spectroscopy (MTS) with a phase modulation frequency of 3.6 MHz.

    图 3  (a)不同调制频率下Cs原子D2线(F=4) - (F=5’)循环跃迁的调制转移光谱信号;(b)不同调制频率下Cs原子D2线(F=4) - (F=5’)循环跃迁的调制转移光谱信号过零点斜率。

    Figure 3.  (a) Modulation transfer spectral signal of cesium (F=4) - (F=5’) cycling transition in D2 line with various modulation frequency. (1) linewidth: 14.5 MHz, slope: 0.025 V/MHz; (2) linewidth: 11.98 MHz, slope: 0.121 V/MHz; (3) linewdth:17.3 MHz, slope: 0.09 V/MHz; (4) linewidth: 22.4 MHz, slope: 0.076 V/MHz; (b) The slope of the zero-crossing point of the modulation transfer spectral signal of cesium (F=4) - (F=5’) cycling transition in D2 line with various modulation frequencies.

    图 4  (a)不同调制频率、不同光斑大小对Cs原子D2线(F=4) - (F=5’)循环跃迁的调制转移光谱线宽的影响;(b)探测光与泵浦光光斑大小对Cs原子D2线(F=4) - (F=5’)循环跃迁的调制转移光谱过零点斜率的影响。

    Figure 4.  (a) Effects of different modulation frequencies and different spot sizes on the MTS linewidth of cesium (F=4) - (F=5’) cycling transition in D2 line. (b) Influence of probe and pump beam size on the MTS slope of cesium (F=4) - (F=5’) cycling transition in D2 line.

    图 5  (a) Cs原子的多普勒展宽的吸收光谱及其微分信号,以及带多普勒背景的饱和吸收光谱。(b) DL Pro @ 852 nm光栅外腔半导体激光器自由运转时的典型频率起伏。

    Figure 5.  (a) Cs atomic Doppler broaden absorption spectrum and its first order differential spectrum, and the saturated absorption spectrum with Doppler background. (b) Typical frequency fluctuation of DL Pro @ 852 nm in the free running case.

    图 6  (a)调制频率为3.6 MHz时对激光器进行MTS锁频后的典型残余频率起伏;(b)不同调制频率下对激光器进行MTS锁频后的典型残余频率起伏。

    Figure 6.  (a)Typical residual frequency fluctuations after MTS lock of the laser at a phase modulation frequency of 3.6 MHz. (b)Typical residual frequency fluctuations after MTS lock of laser with various phase modulation frequency

  • [1] BJORKLUND G C. Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions[J]. Optics Letters, 1980, 5(1): 15-17. doi: 10.1364/OL.5.000015
    [2] RAJ R K, BLOCH D, SNYDER J J, et al. High-frequency optically heterodyned saturation spectroscopy via resonant degenerate four-wave mixing[J]. Physical Review Letters, 1980, 44(19): 1251-1254. doi: 10.1103/PhysRevLett.44.1251
    [3] SHIRLEY J H. Modulation transfer processes in optical heterodyne saturation spectroscopy[J]. Optics Letters, 1982, 7(11): 537-539. doi: 10.1364/OL.7.000537
    [4] CAMY G, BORDÉ C J, DUCLOY M. Heterodyne saturation spectroscopy through frequency modulation of the saturating beam[J]. Optics Communications, 1982, 41(5): 325-330. doi: 10.1016/0030-4018(82)90406-0
    [5] TAKAMOTO M, HONG F L, HIGASHI R, et al. An optical lattice clock[J]. Nature, 2005, 435(7040): 321-324. doi: 10.1038/nature03541
    [6] LUDLOW A D, ZELEVINSKY T, CAMPBELL G K, et al. Sr lattice clock at 1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock[J]. Science, 2008, 319(5871): 1805-1808. doi: 10.1126/science.1153341
    [7] 任颐杰, 颜昌翔, 徐嘉蔚. 增强吸收光谱技术的研究进展及展望[J]. 中国光学(中英文),2023,16(6):1273-1292. doi: 10.37188/CO.2022-0246

    REN Y J, YAN CH X, XU J W. Development and prospects of enhanced absorption spectroscopy[J]. Chinese Optics, 2023, 16(6): 1273-1292. doi: 10.37188/CO.2022-0246
    [8] MA L SH, HOLLBERG L, SHIRLEY J H, et al. Modulation transfer spectroscopy for stabilizing lasers: US, 4590597[P]. 1986-05-20.
    [9] MA L S, HALL J L. Optical heterodyne spectroscopy enhanced by an external optical cavity: toward improved working standards[J]. IEEE Journal of Quantum Electronics, 1990, 26(11): 2006-2012. doi: 10.1109/3.62120
    [10] ZHANG J, WEI D, XIE CH D, et al. Characteristics of absorption and dispersion for rubidium D2 lines with the modulation transfer spectrum[J]. Optics Express, 2003, 11(11): 1338-1344. doi: 10.1364/OE.11.001338
    [11] 刘涛, 李利平, 闫树斌, 等. 铯原子D2线调制转移光谱的实验研究[J]. 中国激光,2003,30(9):791-794. doi: 10.3321/j.issn:0258-7025.2003.09.006

    LIU T, LI L P, YAN SH B, et al. Experimental investigation of modulation transfer spectrum of cesium D2 line[J]. Chinese Journal of Lasers, 2003, 30(9): 791-794. (in Chinese). doi: 10.3321/j.issn:0258-7025.2003.09.006
    [12] 刘涛, 闫树斌, 李利平, 等. 铯原子调制转移光谱在激光稳频中的应用[J]. 光子学报,2003,32(1):5-8.

    LIU T, YAN SH B, LI L P, et al. Frequency stabilization of laser diode via modulation transfer spectrum in cesium vapor cell[J]. Acta Photonica Sinica, 2003, 32(1): 5-8. (in Chinese).
    [13] QI X H, CHEN W L, LIN Y, et al. Ultra-stable rubidium-stabilized external-cavity diode laser based on the modulation transfer spectroscopy technique[J]. Chinese Physics Letters, 2009, 26(4): 044205. doi: 10.1088/0256-307X/26/4/044205
    [14] ZHOU Z CH, WEI R, SHI CH Y, et al. Observation of modulation transfer spectroscopy in the deep modulation regime[J]. Chinese Physics Letters, 2010, 27(12): 124211. doi: 10.1088/0256-307X/27/12/124211
    [15] 贾豫东, 林志立, 欧攀, 等. 调制转移光谱光频率标准系统中电光参数的优化研究[J]. 物理学报,2011,60(12):124214. doi: 10.7498/aps.60.124214

    JIA Y D, LIN ZH L, OU P, et al. Optimization of electro-optical parameter of optical frequency standard system based on modulation transfer spectroscopy technique[J]. Acta Physica Sinica, 2011, 60(12): 124214. (in Chinese). doi: 10.7498/aps.60.124214
    [16] CHENG B, WANG ZH Y, WU B, et al. Laser frequency stabilization and shifting by using modulation transfer spectroscopy[J]. Chinese Physics B, 2014, 23(10): 104222. doi: 10.1088/1674-1056/23/10/104222
    [17] RU N, WANG Y, MA H J, et al. Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy[J]. Chinese Physics B, 2018, 27(7): 074201. doi: 10.1088/1674-1056/27/7/074201
    [18] YOSHITAKE S, AKIYAMA K, IRITANI M, et al. 1.55-μm-band practical frequency-stabilized semiconductor laser using C2H2 or HCN absorption lines[J]. Proceedings of SPIE, 1993, 1837: 124-133. doi: 10.1117/12.143666
    [19] PISANI M, SASSI M P, ZUCCO M. High spectral purity CO2 laser stabilized using a molecular frequency reference[J]. IEEE Transactions on Instrumentation and Measurement, 1995, 44(2): 159-161. doi: 10.1109/19.377798
    [20] BRUNER A, ARIE A, ARBORE M A, et al. Frequency stabilization of a diode laser at 1540 nm by locking to sub-Doppler lines of potassium at 770 nm[J]. Applied Optics, 1998, 37(6): 1049-1052. doi: 10.1364/AO.37.001049
    [21] HALL J L, MA L SH, TAUBMAN M, et al. Stabilization and frequency measurement of the I2-stabilized Nd: YAG laser[J]. IEEE Transactions on Instrumentation and Measurement, 1999, 48(2): 583-586. doi: 10.1109/19.769663
    [22] GALZERANO G, SVELTO C, BAVA E, et al. High-frequency-stability diode-pumped Nd: YAG lasers with the FM sidebands method and Doppler-free iodine lines at 532 nm[J]. Applied Optics, 1999, 38(33): 6962-6966. doi: 10.1364/AO.38.006962
    [23] GUO R X, HONG F L, ONAE A, et al. Frequency stabilization of a 1319-nm Nd: YAG laser by saturation spectroscopy of molecular iodine[J]. Optics Letters, 2004, 29(15): 1733-1735. doi: 10.1364/OL.29.001733
    [24] LEONHARDT V, CAMP J B. Space interferometry application of laser frequency stabilization with molecular iodine[J]. Applied Optics, 2006, 45(17): 4142-4146. doi: 10.1364/AO.45.004142
    [25] GALZERANO G, LAPORTA P. Absolute frequency stabilization of diode lasers around 0.94 μm[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(2): 365-368. doi: 10.1109/TIM.2007.891059
    [26] MCCARRON D J, KING S A, CORNISH S L. Modulation transfer spectroscopy in atomic rubidium[J]. Measurement Science and Technology, 2008, 19(10): 105601. doi: 10.1088/0957-0233/19/10/105601
    [27] 洪毅, 侯霞, 陈迪俊, 等. 基于Rb 87调制转移光谱稳频技术研究[J]. 中国激光,2021,48(21):2101003. doi: 10.3788/CJL202148.2101003

    HONG Y, HOU X, CHEN D J, et al. Research on frequency stabilization technology of modulation transfer spectroscopy based on Rb87[J]. Chinese Journal of Lasers, 2021, 48(21): 2101003. (in Chinese). doi: 10.3788/CJL202148.2101003
    [28] 宋微, 朱欣欣, 吴彬, 等. 基于调制转移光谱多参量相关的激光稳频特性研究[J]. 光子学报,2021,50(11):1114003. doi: 10.3788/gzxb20215011.1114003

    SONG W, ZHU X X, WU B, et al. Research on frequency stabilization characteristics of multi-parameter dependent laser source based on modulated transfer spectrum[J]. Acta Photonica Sinica, 2021, 50(11): 1114003. (in Chinese). doi: 10.3788/gzxb20215011.1114003
    [29] 喻晓, 吕梦洁, 张旭, 等. 基于铷原子调制转移光谱技术的1560 nm光纤激光器频率锁定研究[J]. 中国激光,2022,49(3):0301002. doi: 10.3788/CJL202249.0301002

    YU X, LV M J, ZHANG X, et al. Research on frequency locking of 1560 nm fiber laser based on rubidium atomic modulation transfer spectroscopy technology[J]. Chinese Journal of Lasers, 2022, 49(3): 0301002. (in Chinese). doi: 10.3788/CJL202249.0301002
  • 加载中
图(6)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  34
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-27
  • 录用日期:  2023-12-26
  • 网络出版日期:  2024-05-10

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!