留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类H型结构的太赫兹带阻滤波器

陈祥雪 付子亲 王凤超 陈进 杨晶

陈祥雪, 付子亲, 王凤超, 陈进, 杨晶. 类H型结构的太赫兹带阻滤波器[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0179
引用本文: 陈祥雪, 付子亲, 王凤超, 陈进, 杨晶. 类H型结构的太赫兹带阻滤波器[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0179
CHEN Xiang-xue, FU Zi-qin, WANG Feng-chao, CHEN Jin, YANG Jing. Terahertz band-stop filter with H-type structure[J]. Chinese Optics. doi: 10.37188/CO.2023-0179
Citation: CHEN Xiang-xue, FU Zi-qin, WANG Feng-chao, CHEN Jin, YANG Jing. Terahertz band-stop filter with H-type structure[J]. Chinese Optics. doi: 10.37188/CO.2023-0179

类H型结构的太赫兹带阻滤波器

doi: 10.37188/CO.2023-0179
基金项目: 上海应用技术大学协同创新基金(No. XTCX2020-12); 上海应用技术大学中青年科技人才发展基金(No. ZQ2022-6)
详细信息
    作者简介:

    陈祥雪(2000—),女,山东泰安人,研究生,硕士,主要从事太赫兹功能器件、太赫兹波导方面的研究。E-mail:xiangxue_chenqq@163.com

    杨 晶(1990—),女,江苏淮安人,博士,讲师,硕士生导师,主要从事太赫兹时域光谱技术、太赫兹超材料器件及太赫兹生物学等领域方面的研究。E-mail:yangjingxqq@sit.edu.cn

  • 中图分类号: TN248

Terahertz band-stop filter with H-type structure

Funds: Supported by Collaborative Innovation Fund, Shanghai Institude of Technology (No. XTCX2020-12); Youth Science and Technology Talent Development Fund, Shanghai Institude of Technology (No. ZQ2022-6)
More Information
  • 摘要:

    本文基于对称的类H型结构设计了一种超材料太赫兹带阻滤波器,这种H型结构的连续金属臂可以流通电流,能为拓展超材料滤波器在电子应用领域提供有效参考。利用电磁仿真软件CST Microwave Studio 2021研究了该滤波器的滤波特性,通过改变H型双臂间距臂长、周期长度、双H间距离等,确定了滤波器的几何参数。结果表明,该结构可实现偏振选择的功能,在y偏振条件下,滤波器在0.2~2.3 THz范围内没有明显谐振峰,但透过率范围在−15到−3 dB之间。而在x偏振条件下,可在中心频率1.34 THz处可获得FWHM带宽为0.15 THz的一个阻带,传输参数约为−30 dB。为了验证仿真结果,采用微加工工艺制备了超材料滤波器样品,使用透射式太赫兹时域光谱系统对样品进行测试,测试结果与仿真结果吻合较好。

     

  • 图 1  太赫兹滤波器结构设计示意图

    Figure 1.  Structure diagram of the THz filter design.

    图 2  (a)透射系数仿真图 (b) 入射波沿x轴偏转位置和透射共振峰位置(f= 1.34 THz)处的电流分布

    Figure 2.  (a) Transmission coefficient simulation diagram (b) The current distribution of the incident wave at the x-axis deflection position and the transmission formant position (f= 1.34 THz)

    图 3  (a) 模拟改变内侧臂长度b下的传输特性(b) 实线:模拟不同双臂间距l和周期长度p下的传输特性;虚线:模拟不同双H间距距离s和周期长度p下的传输特性

    Figure 3.  (a) Simulated transmission characteristics for changing length b (b) Soild line: Simulated transmission characteristics under different arms spacing l and lengths p; Dotted line: Simulated transmission characteristics under different double H spacing distance s and lengths p

    图 4  (a)滤波器样品显微镜照片(b)透射式THz-TDS系统示意图(c)太赫兹透射频域信号(d) 相对透过率谱线

    Figure 4.  (a) Microscope photo of filter sample (b) Schematic diagram of the transmission THz-TDS system (c) Terahertz through radio frequency domain signal (d) Relative transmittance spectrum

  • [1] 潘学聪, 姚泽瀚, 徐新龙, 等. 太赫兹波段超材料的制作、设计及应用[J]. 中国光学,2013,6(3):283-296.

    PAN X C, YAO Z H, XU X L, et al. Fabrication, design and application of THz metamaterials[J]. Chinese Optics, 2013, 6(3): 283-296. (in Chinese).
    [2] 姚建铨, 路洋, 张百钢, 等. THz辐射的研究和应用新进展[J]. 光电子·激光,2005,16(4):503-510.

    YAO J Q, LU Y, ZHANG B G, et al. New research progress of THz radiation[J]. Journal of Optoelectronics·Laser, 2005, 16(4): 503-510. (in Chinese).
    [3] TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105. doi: 10.1038/nphoton.2007.3
    [4] LU X Y, VENKATESH S, SAEIDI H. A review on applications of integrated terahertz systems[J]. China Communications, 2021, 18(5): 175-201. doi: 10.23919/JCC.2021.05.011
    [5] WILLIAMS G P. Filling the THz gap—high power sources and applications[J]. Reports on Progress in Physics, 2006, 69(2): 301-326. doi: 10.1088/0034-4885/69/2/R01
    [6] 闫海涛, 邓朝, 郭澜涛, 等. 太赫兹远距离快速扫描成像系统的设计[J]. 应用光学,2016,37(2):183-186. doi: 10.5768/JAO201637.0201006

    YAN H T, DENG CH, GUO L T, et al. Design of terahertz rapid standoff imaging system[J]. Journal of Applied Optics, 2016, 37(2): 183-186. (in Chinese). doi: 10.5768/JAO201637.0201006
    [7] GONG A P, QIU Y T, CHEN X W, et al. Biomedical applications of terahertz technology[J]. Applied Spectroscopy Reviews, 2020, 55(5): 418-438. doi: 10.1080/05704928.2019.1670202
    [8] 胡其枫, 蔡健. 基于深度学习的太赫兹时域光谱识别研究[J]. 光谱学与光谱分析,2021,41(1):94-99.

    HU Q F, CAI J. Research of terahertz time-domain spectral Identification based on deep learning[J]. Spectroscopy and Spectral Analysis, 2021, 41(1): 94-99. (in Chinese).
    [9] FANG X M, JIANG X W, WU H. Dual-wavelength narrow-bandwidth dielectric metamaterial absorber[J]. Chinese Optics, 2021, 14(6): 1327-1340. doi: 10.37188/CO.2021-0075
    [10] 张若雅, 朱巧芬, 张岩. 可调谐太赫兹超材料吸波器研究进展[J]. 量子电子学报,2023,40(3):301-318. doi: 10.3969/j.issn.1007-5461.2023.03.002

    ZHANG R Y, ZHU Q F, ZHANG Y. Research progress of tunable terahertz metamaterial absorbers[J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 301-318. (in Chinese). doi: 10.3969/j.issn.1007-5461.2023.03.002
    [11] 方晓敏, 江孝伟, 武华. 双波长窄带宽介质超材料吸收器(英文)[J]. 中国光学, 2021, 14(6): 1327-1340.

    FANG X M, JIANG X W, WU H. Dual-wavelength narrow-bandwidth dielectric metamaterial absorber[J]. Chinese Optics, 2021, 14(6): 1327-1340. .
    [12] 凌芳, 孟庆龙, 黄人帅, 等. 温控太赫兹调制器多频带调制特性[J]. 光谱学与光谱分析,2017,37(5):1334-1338.

    LING F, MENG Q L, HUANG R SH, et al. The characteristics of thermally tunable multi-bands terahertz modulator[J]. Spectroscopy and Spectral Analysis, 2017, 37(5): 1334-1338. (in Chinese).
    [13] KYOUNG J, JANG E Y, LIMA M D, et al. A reel-wound carbon nanotube polarizer for terahertz frequencies[J]. Nano Letters, 2011, 11(10): 4227-4231. doi: 10.1021/nl202214y
    [14] 董卓, 陈捷, 朱一帆, 等. 黑砷磷室温太赫兹探测器(英文)[J]. 中国光学,2021,14(1):182-195. doi: 10.37188/CO.2020-0175

    DONG ZH, CHEN J, ZHU Y F, et al. Room-temperature terahertz photodetectors based on black arsenic-phosphorus[J]. Chinese Optics, 2021, 14(1): 182-195. doi: 10.37188/CO.2020-0175
    [15] 肖尚辉, 刘简, 胡波, 等. 基于低采样率数模转换器和模数转换器的太赫兹发射机线性化[J]. 电子与信息学报,2023,45(2):718-724.

    XIAO SH H, LIU J, HU B, et al. Linearization of terahertz transmitter based on low sampling rate DAC and ADC[J]. Journal of Electronics & Information Technology, 2023, 45(2): 718-724. (in Chinese).
    [16] VALUŠIS G, LISAUSKAS A, YUAN H, et al. Roadmap of terahertz imaging 2021[J]. Sensors, 2021, 21(12): 4092. doi: 10.3390/s21124092
    [17] YEH T T, GENOVESI S, MONORCHIO A, et al. Ultra-broad and sharp-transition bandpass terahertz filters by hybridizing multiple resonances mode in monolithic metamaterials[J]. Optics Express, 2012, 20(7): 7580-7589. doi: 10.1364/OE.20.007580
    [18] ZHU M, LEE C. A design of terahertz broadband filters and its effect in eliminating asymmetric characteristics in device structures[J]. Journal of Lightwave Technology, 2015, 33(15): 3280-3285. doi: 10.1109/JLT.2015.2432017
    [19] 王俊林, 张斌珍, 段俊萍, 等. 柔性双阻带太赫兹超材料滤波器[J]. 光学学报,2017,37(10):1016001. doi: 10.3788/AOS201737.1016001

    WANG J L, ZHANG B ZH, DUAN J P, et al. Flexible dual-stopband terahertz metamaterial filter[J]. Acta Optica Sinica, 2017, 37(10): 1016001. (in Chinese). doi: 10.3788/AOS201737.1016001
    [20] KUMAR D, JAIN R, SHAHJAHAN, et al. Bandwidth enhancement of planar terahertz metasurfaces via overlapping of dipolar modes[J]. Plasmonics, 2020, 15(6): 1925-1934. doi: 10.1007/s11468-020-01222-7
    [21] 高万, 王建扬, 吴倩楠. 基于双金属环的超材料太赫兹宽频带通滤波器的设计与研究[J]. 激光与光电子学进展,2021,58(5):0516001.

    GAO W, WANG J Y, WU Q N. Design and investigation of a metamaterial terahertz broadband bandpass filter based on dual metallic ring[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0516001. (in Chinese).
    [22] HUANG Y, OKATANI T, KANAMORI Y. Broadband stop filters for THz waves using H-shaped metamaterials with dual electronic-plasmonic functionality[J]. Japanese Journal of Applied Physics, 2022, 61(SD): SD1007. doi: 10.35848/1347-4065/ac55dd
    [23] TANG SH, HAN J N. Acoustic transmission characteristics based on H-type metamaterials[J]. IEEE Access, 2019, 7: 96125-96131. doi: 10.1109/ACCESS.2019.2929194
    [24] WANG K H, LI J SH, YAO J Q. Sensitive terahertz free space modulator using CsPbBr3 perovskite quantum dots–embedded metamaterial[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41(5): 557-567. doi: 10.1007/s10762-020-00680-8
    [25] TANG CH, YANG J, WANG Y D, et al. Integrating terahertz metamaterial and water nanodroplets for ultrasensitive detection of amyloid β aggregates in liquids[J]. Sensors and Actuators B:Chemical, 2021, 329: 129113. doi: 10.1016/j.snb.2020.129113
    [26] YANG J, TANG CH, WANG Y D, et al. The terahertz dynamics interfaces to ion–lipid interaction confined in phospholipid reverse micelles[J]. Chemical Communications, 2019, 55(100): 15141-15144. doi: 10.1039/C9CC07598D
  • 加载中
图(4)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  36
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-11
  • 录用日期:  2023-12-13
  • 网络出版日期:  2024-01-31

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!