留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮化镓基Micro-LED侧壁对外量子效率的影响及侧壁处理技术综述

邝海 黄振 熊志华 刘丽

邝海, 黄振, 熊志华, 刘丽. 氮化镓基Micro-LED侧壁对外量子效率的影响及侧壁处理技术综述[J]. 中国光学(中英文), 2023, 16(6): 1305-1317. doi: 10.37188/CO.2023-0091
引用本文: 邝海, 黄振, 熊志华, 刘丽. 氮化镓基Micro-LED侧壁对外量子效率的影响及侧壁处理技术综述[J]. 中国光学(中英文), 2023, 16(6): 1305-1317. doi: 10.37188/CO.2023-0091
KUANG Hai, HUANG Zhen, XIONG Zhi-hua, LIU Li. A review of the effect of GaN-Based Micro-LED sidewall on external quantum efficiency and sidewall treatment techniques[J]. Chinese Optics, 2023, 16(6): 1305-1317. doi: 10.37188/CO.2023-0091
Citation: KUANG Hai, HUANG Zhen, XIONG Zhi-hua, LIU Li. A review of the effect of GaN-Based Micro-LED sidewall on external quantum efficiency and sidewall treatment techniques[J]. Chinese Optics, 2023, 16(6): 1305-1317. doi: 10.37188/CO.2023-0091

氮化镓基Micro-LED侧壁对外量子效率的影响及侧壁处理技术综述

doi: 10.37188/CO.2023-0091
基金项目: 江西省教育厅科学技术研究项目(No. GJJ2201338);国家自然科学基金(No. 12364013);江西科技师范大学博士科研启动基金项目(No.2019BSQD020);中央引导地方科技发展资金项目(No. 2022ZDD03088)
详细信息
    作者简介:

    邝 海(1983—),女,湖南临武人,博士,讲师, 2019年于南昌大学获得博士学位,现为江西科技师范大学江西省光电子与通信重点实验室讲师,主要从事半导体发光材料与器件等方面的研究。E-mail: haizi411@126.com

    熊志华(1974—),男,江西南昌人,博士,教授,2008年于南昌大学获得博士学位,现为江西科技师范大学江西省光电子与通信重点实验室主任,主要从事半导体光电材料等方面的研究。E-mail: xiong_zhihua@126.com

  • 中图分类号: TN312

A review of the effect of GaN-Based Micro-LED sidewall on external quantum efficiency and sidewall treatment techniques

Funds: Supported by Science and Technology Research Project of Jiangxi Education Department (No. GJJ2201338); National Natural Science Foundation of China (No. 12364013); Doctoral Research Foundation of Jiangxi Science and Technology Normal University (No. 2019BSQD020); Government Guides Local Science and Technology Development Funds(No. 2022ZDD03088)
More Information
  • 摘要:

    氮化镓基Micro-LED具备高亮度、高响应频率、低功耗等优点,是未来显示技术和可见光通信系统的理想选择,但是目前外量子效率(EQE)低下这一问题严重影响其规模化量产及进一步应用。为了突破EQE低下这一瓶颈,通过分析Micro-LED外量子效率的影响因素,得知EQE下降的主要原因包括侧壁缺陷引起的载流子损耗及非辐射复合。总结了侧壁缺陷对载流子输运及复合的影响。综述了目前常用的侧壁处理技术及修复方法,指出现有侧壁处理方法较为笼统、针对性不足且载流子与侧壁缺陷的作用机理并不十分清楚。提出应深入系统地研究侧壁缺陷种类和分布、载流子与侧壁缺陷作用机制及侧壁处理过程中的缺陷修复模式。本文为提高外量子效率、加快Micro-LED商业化量产进程提供设计思路和理论依据。

     

  • 图 1  Micro-LED结构示意图(改编自文献[1])

    Figure 1.  Schematic diagram of Micro-LEDs Structure (adapted from Ref.[1])

    图 2  用于模拟和进行效率分析的垂直结构InGaN/GaN 基蓝色发光二极管的示意图(改编自文献[35])

    Figure 2.  Schematic diagram of the InGaN/GaN-based blue light-emitting-diode used for the simulation and the analysis of the efficiency (adapted from Ref.[35])

    图 3  ICP腐蚀后ITO层的横断面扫描电子显微镜(SEM)图像[62]

    Figure 3.  Cross-sectional scanning electron microscopy (SEM) image of ITO layer after exposing to ICP etch [62]

    图 4  提取系数A(a)和C (b)随着LED尺寸的变化图[53]

    Figure 4.  Extracted coefficients A (a) and C (b) plotted versus LED size[53]

    图 5  (a)完整的Micro-LED示意图;(b)侧壁带缺陷的Micro-LED示意图;(c)样品的I-V曲线;(d)样品的P电极附近的载流子浓度变化(改编自文献[42])

    Figure 5.  Schematic diagrams for (a) LED without sidewall damages and (b) LED with sidewall damages; (c) the current-voltage characteristics in semi-log scale for LEDs; (d) changes in carrier concentration profiles near the P-region for LED (adapted from Ref. [42])

    图 6  (a)样品在1 A/cm2下的电致发光图像;(b)、(c)不同尺寸芯片的EQE随注入电流密度的变化(改编自文献[62])

    Figure 6.  (a) Electroluminescence images of Micro-LEDs at 1 A/cm2; (b), (c) variation of EQE with injection current density for different chip sizes (adapted from Ref.[62])

    图 7  离子注入后Micro-LED表面变化示意图。 (a)表面化学结构发生变化;(b)原子排列、表面修复和空穴缺陷填充;(c) GaN中的钝化层[70]

    Figure 7.  Schematic diagram of Micro-LED surface changes after ion implantation. (a) Changes in surface chemical structure; (b) atomic alignment, surface repair and cavity defect filling; (c) passivation layer in GaN[70]

    表  1  Micro-LED与OLED、LCD比较[4, 9]

    Table  1.   Performance comparison of Micro-LED, OLED and LCD [4, 9]

    Micro-LED OLED LCD
    Mechanism Self-emissive Self-emissive Backlight
    Luminous efficacy High Medium Low
    Power consumption Low Medium High
    Lifetime Long Medium Long
    Response time ns μs ms
    Cost High Medium Low
    下载: 导出CSV
  • [1] JIN S X, LI J, LI J Z, et al. GaN microdisk light emitting diodes[J]. Applied Physics Letters, 2000, 76(5): 631-633. doi: 10.1063/1.125841
    [2] 蒋成伟, 沙源清, 袁佳磊, 等. 电致发光的完全悬空超薄硅衬底氮化镓基蓝光LED器件的制备与表征[J]. 中国光学,2021,14(1):153-162. doi: 10.37188/CO.2020-0148

    JIANG CH W, SHA Y Q, YUAN J L, et al. Fabrication and characterization of an LED based on a GaN-on-silicon platform with an ultra-thin freestanding membrane in the blue range[J]. Chinese Optics, 2021, 14(1): 153-162. (in Chinese) doi: 10.37188/CO.2020-0148
    [3] ZHANG K, LIU Y B, KWOK H S, et al. Investigation of electrical properties and reliability of GaN-based micro-LEDs[J]. Nanomaterials, 2020, 10(4): 689. doi: 10.3390/nano10040689
    [4] LIU ZH J, LIN C H, HYUN B R, et al. Micro-light-emitting diodes with quantum dots in display technology[J]. Light:Science & Applications, 2020, 9(1): 23.
    [5] WOODGATE G J, HARROLD J. P-101: Micro-optical systems for micro-LED displays[J]. SID Symposium Digest of Technical Papers, 2018, 49(1): 1559-1562. doi: 10.1002/sdtp.12285
    [6] YIN Y M, HU Z P, ALI M U, et al. Alleviating the crosstalk effect via a fine-moulded light-blocking matrix for colour-converted micro-LED display with a 122% NTSC gamut[J]. Light: Advanced Manufacturing, 2022, 3: 36.
    [7] 殷录桥, 张雪松, 任开琳, 等. 考虑小尺寸效应的Micro-LED驱动结构设计[J]. 光学学报,2023,43(2):0223003.

    YIN L Q, ZHANG X S, REN K L, et al. Design of micro-LED driving structure considering small size effect[J]. Acta Optica Sinica, 2023, 43(2): 0223003. (in Chinese)
    [8] HUANG Y G, HSIANG E L, DENG M Y, et al. Mini-LED, Micro-LED and OLED displays: present status and future perspectives[J]. Light:Science & Applications, 2020, 9(1): 105.
    [9] LEE H E, SHIN J H, PARK J H, et al. Micro light-emitting diodes for display and flexible biomedical applications[J]. Advanced Functional Materials, 2019, 29(24): 1808075. doi: 10.1002/adfm.201808075
    [10] RAJBHANDARI S, MCKENDRY J J D, HERRNSDORF J, et al. A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications[J]. Semiconductor Science and Technology, 2017, 32(2): 023001. doi: 10.1088/1361-6641/32/2/023001
    [11] XIONG J, WU S T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications[J]. eLight, 2021, 1: 3.
    [12] LEE V W, TWU N, KYMISSIS I. Micro-LED technologies and applications[J]. Information Display, 2016, 32(6): 16-23. doi: 10.1002/j.2637-496X.2016.tb00949.x
    [13] TEMPLIER F. GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems[J]. Journal of the Society for Information Display, 2016, 24(11): 669-675. doi: 10.1002/jsid.516
    [14] LIU Y T, LIAO K Y, LIN C L, et al. 66-2: Invited Paper: PixeLED display for transparent applications[J]. SID Symposium Digest of Technical Papers, 2018, 49(1): 874-875.
    [15] LI K H, FU W Y, CHOI H W. Chip-scale GaN integration[J]. Progress in Quantum Electronics, 2020, 70: 100247. doi: 10.1016/j.pquantelec.2020.100247
    [16] MONAVARIAN M, RASHIDI A, ARAGON A A, et al. Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes[J]. Applied Physics Letters, 2018, 112(4): 041104. doi: 10.1063/1.5019730
    [17] RASHIDI A, MONAVARIAN M, ARAGON A, et al. High-speed nonpolar InGaN/GaN LEDs for visible-light communication[J]. IEEE Photonics Technology Letters, 2017, 29(4): 381-384. doi: 10.1109/LPT.2017.2650681
    [18] ARVANITAKIS G N, BIAN R, MCKENDRY J J D, et al. Gb/s underwater wireless optical communications using series-connected GaN micro-LED arrays[J]. IEEE Photonics Journal, 2020, 12(2): 7901210.
    [19] 蒋府龙, 许非凡, 刘召军, 等. 氮化镓基Micro-LED显示技术研究进展[J]. 人工晶体学报,2020,49(11):2013-2023. doi: 10.3969/j.issn.1000-985X.2020.11.005

    JIANG F L, XU F F, LIU ZH J, et al. Development of GaN-based micro-LED display technology[J]. Journal of Synthetic Crystals, 2020, 49(11): 2013-2023. (in Chinese) doi: 10.3969/j.issn.1000-985X.2020.11.005
    [20] 严子雯, 严群, 李典伦, 等. 高度集成的μLED显示技术研究进展[J]. 发光学报,2020,41(10):1309-1317. doi: 10.37188/CJL.20200191

    YAN Z W, YAN Q, LI D L, et al. Research progress of high integration density μLED display technology[J]. Chinese Journal of Luminescence, 2020, 41(10): 1309-1317. (in Chinese) doi: 10.37188/CJL.20200191
    [21] ZHOU X J, TIAN P F, SHER C W, et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display[J]. Progress in Quantum Electronics, 2020, 71: 100263. doi: 10.1016/j.pquantelec.2020.100263
    [22] WU T ZH, SHER C W, LIN Y, et al. Mini-LED and micro-LED: promising candidates for the next generation display technology[J]. Applied Sciences, 2018, 8(9): 1557. doi: 10.3390/app8091557
    [23] JIANG H X, LIN J Y. Nitride micro-LEDs and beyond-a decade progress review[J]. Optics Express, 2013, 21(S3): A475-A484. doi: 10.1364/OE.21.00A475
    [24] 董冰, 佟首峰, 张鹏, 等. 20 m水下无线蓝光LED通信系统样机设计[J]. 中国光学,2021,14(6):1451-1458. doi: 10.37188/CO.2020-0190

    DONG B, TONG SH F, ZHANG P, et al. Design of a 20 m underwater wireless optical communication system based on blue LED[J]. Chinese Optics, 2021, 14(6): 1451-1458. (in Chinese) doi: 10.37188/CO.2020-0190
    [25] CHENG D, WANG Q, LIU Y, et al. Design and manufacture AR head-mounted displays: A review and outlook[J]. Light: Advanced Manufacturing, 2021, 2(3): 350-369.
    [26] PARK J H, LEE B. Holographic techniques for augmented reality and virtual reality near-eye displays[J]. Light: Advanced Manufacturing, 2022, 3(1): 137-150.
    [27] YUSUKE S, KAZUO S, Daisuke B, et al. Holographic augmented reality display with conical holographic optical element for wide viewing zone[J]. Light: Advanced Manufacturing, 2022, 3(1): 26-34.
    [28] BEMARD C K, MARIA P. Holographic optics in planar optical systems for next generation small form factor mixed reality headsets[J]. Light: Advanced Manufacturing, 2022, 3(4): 771-801.
    [29] Global micro-LED market with covid-19 impact analysis by application (display (smartwatch, NTE device, smartphone and tablet, television, digital signage), lighting (general, automotive)), display panel size, vertical and region-forecast to 2027[EB/OL]. (2021-12)[2023-06-16].https://www.researchandmarkets.com/reports/5067415/global-micro-LED-market-with-covid-19-impact#pos-0.
    [30] JIANG H X, JIN S X, LI J, et al. III-nitride blue microdisplays[J]. Applied Physics Letters, 2001, 78(9): 1303-1305. doi: 10.1063/1.1351521
    [31] JIN S X, LI J, LIN J Y, et al. InGaN/GaN quantum well interconnected microdisk light emitting diodes[J]. Applied Physics Letters, 2000, 77(20): 3236-3238. doi: 10.1063/1.1326479
    [32] ZHU G Q, LIU Y J, MING R, et al. Mass transfer, detection and repair technologies in micro-LED displays[J]. Science China Materials, 2022, 65(8): 2128-2153. doi: 10.1007/s40843-022-2110-2
    [33] HANG SH, CHUANG C M, ZHANG Y H, et al. A review on the low external quantum efficiency and the remedies for GaN-based micro-LEDs[J]. Journal of Physics D:Applied Physics, 2021, 54(15): 153002. doi: 10.1088/1361-6463/abd9a3
    [34] WIERER J J JR, TANSU N. III-nitride micro-LEDs for efficient emissive displays[J]. Laser & Photonics Reviews, 2019, 13(9): 1900141.
    [35] LU SH Q, LI J CH, HUANG K, et al. Designs of InGaN micro-LED structure for improving quantum efficiency at low current density[J]. Nanoscale Research Letters, 2021, 16(1): 99. doi: 10.1186/s11671-021-03557-4
    [36] VIREY E H, BARON N. 45-1: Status and prospects of microLED displays[J]. SID Symposium Digest of Technical Papers, 2018, 49(1): 593-596. doi: 10.1002/sdtp.12415
    [37] ZHANG SH N, ZHANG J L, GAO J D, et al. Efficient emission of InGaN-based light-emitting diodes: toward orange and red[J]. Photonics Research, 2020, 8(11): 1671-1675. doi: 10.1364/PRJ.402555
    [38] ZHANG L, OU F, CHONG W C, et al. Wafer-scale monolithic hybrid integration of Si-based IC and III-V epi-layers-A mass manufacturable approach for active matrix micro-LED micro-displays[J]. Journal of the Society for Information Display, 2018, 26(3): 137-145. doi: 10.1002/jsid.649
    [39] JUNG T, CHOI J H, JANG S H, et al. 32-1: Invited Paper: Review of micro-light-emitting-diode technology for micro-display applications[J]. SID Symposium Digest of Technical Papers, 2019, 50(1): 442-446. doi: 10.1002/sdtp.12951
    [40] COK R S, MEITL M, ROTZOLL R, et al. Inorganic light-emitting diode displays using micro-transfer printing[J]. Journal of the Society for Information Display, 2017, 25(10): 589-609. doi: 10.1002/jsid.610
    [41] CORBETT B, LOI R, ZHOU W D, et al. Transfer print techniques for heterogeneous integration of photonic components[J]. Progress in Quantum Electronics, 2017, 52: 1-17. doi: 10.1016/j.pquantelec.2017.01.001
    [42] KOU J Q, SHEN C C, SHAO H, et al. Impact of the surface recombination on InGaN/GaN-based blue micro-light emitting diodes[J]. Optics Express, 2019, 27(12): A643-A653. doi: 10.1364/OE.27.00A643
    [43] HWANG D, MUGHAL A, PYNN C D, et al. Sustained high external quantum efficiency in ultrasmall blue III-nitride micro-LEDs[J]. Applied Physics Express, 2017, 10(3): 032101. doi: 10.7567/APEX.10.032101
    [44] BULASHEVICH K A, KARPOV S Y. Impact of surface recombination on efficiency of III-nitride light-emitting diodes[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2016, 10(6): 480-484. doi: 10.1002/pssr.201600059
    [45] TIAN P F, MCKENDRY J J D, GONG ZH, et al. Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes[J]. Applied Physics Letters, 2012, 101(23): 231110. doi: 10.1063/1.4769835
    [46] ZHAO CH, NG T K, PRABASWARA A, et al. An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for mitigating Shockley-Read-Hall recombination[J]. Nanoscale, 2015, 7(40): 16658-16665. doi: 10.1039/C5NR03448E
    [47] OLIVIER F, TIRANO S, DUPRÉ L, et al. Influence of size-reduction on the performances of GaN-based micro-LEDs for display application[J]. Journal of Luminescence, 2017, 191: 112-116. doi: 10.1016/j.jlumin.2016.09.052
    [48] KONOPLEV S S, BULASHEVICH K A, KARPOV S Y. From large-size to micro-LEDs: scaling trends revealed by modeling[J]. Physica Status Solidi (A), 2018, 215(10): 1700508. doi: 10.1002/pssa.201700508
    [49] 江风益, 刘军林, 王立, 等. 硅衬底高光效GaN基蓝色发光二极管[J]. 中国科学:物理学 力学 天文学,2015,45(6):067302.

    JIANG F Y, LIU J L, WANG L, et al. High optical efficiency GaN based blue LED on silicon substrate[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2015, 45(6): 067302. (in Chinese)
    [50] CHOI H W, JEON C W, DAWSON M D, et al. Mechanism of enhanced light output efficiency in InGaN-based microlight emitting diodes[J]. Journal of Applied Physics, 2003, 93(10): 5978-5982. doi: 10.1063/1.1567803
    [51] ZHANG Y Y, GUO E Q, LI ZH, et al. Light extraction efficiency improvement by curved GaN sidewalls in InGaN-based light-emitting diodes[J]. IEEE Photonics Technology Letters, 2012, 24(4): 243-245. doi: 10.1109/LPT.2011.2177251
    [52] KARPOV S. ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: a review[J]. Optical and Quantum Electronics, 2015, 47(6): 1293-1303. doi: 10.1007/s11082-014-0042-9
    [53] OLIVIER F, DAAMI A, LICITRA C, et al. Shockley-Read-Hall and auger non-radiative recombination in GaN based LEDs: a size effect study[J]. Applied Physics Letters, 2017, 111(2): 022104. doi: 10.1063/1.4993741
    [54] WIERER J J JR, TSAO J Y, SIZOV D S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting[J]. Laser & Photonics Reviews, 2013, 7(6): 963-993.
    [55] LIU A CH, SINGH K J, HUANG Y M, et al. Increase in the efficiency of III-nitride micro-LEDs: atomic-layer deposition and etching[J]. IEEE Nanotechnology Magazine, 2021, 15(3): 18-34. doi: 10.1109/MNANO.2021.3066393
    [56] CHU CH SH, TIAN K K, ZHANG Y H, et al. Progress in external quantum efficiency for III-nitride based deep ultraviolet light-emitting diodes[J]. Physica Status Solidi (A), 2019, 216(4): 1800815. doi: 10.1002/pssa.201800815
    [57] ZHANG Z H, ZHANG Y H, BI W G, et al. On the internal quantum efficiency for InGaN/GaN light-emitting diodes grown on insulating substrates[J]. Physica Status Solidi (A), 2016, 213(12): 3078-3102. doi: 10.1002/pssa.201600281
    [58] PEARTON S J. Characterization of damage in electron cyclotron resonance plasma etched compound semiconductors[J]. Applied Surface Science, 1997, 117-118: 597-604. doi: 10.1016/S0169-4332(97)80149-3
    [59] LEE J M, HUH C, KIM D J, et al. Dry-etch damage and its recovery in InGaN/GaN multi-quantum-well light-emitting diodes[J]. Semiconductor Science and Technology, 2003, 18(6): 530-534. doi: 10.1088/0268-1242/18/6/323
    [60] BOUSSADI Y, ROCHAT N, BARNES J P, et al. Investigation of sidewall damage induced by reactive ion etching on AlGaInP mesa for micro-LED application[J]. Journal of Luminescence, 2021, 234: 117937. doi: 10.1016/j.jlumin.2021.117937
    [61] TIAN W Y, LI J H. Size-dependent optical-electrical characteristics of blue GaN/InGaN micro-light-emitting diodes[J]. Applied Optics, 2020, 59(29): 9225-9232. doi: 10.1364/AO.405572
    [62] WONG M S, HWANG D, ALHASSAN A I, et al. High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition[J]. Optics Express, 2018, 26(16): 21324-21331. doi: 10.1364/OE.26.021324
    [63] JIANG F L, HYUN B R, ZHANG Y, et al. Role of intrinsic surface states in efficiency attenuation of GaN-based micro-light-emitting-diodes[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2021, 15(2): 2000487. doi: 10.1002/pssr.202000487
    [64] LEE D H, LEE J H, PARK J S, et al. Improving the leakage characteristics and efficiency of GaN-based micro-light-emitting diode with optimized passivation[J]. ECS Journal of Solid State Science and Technology, 2020, 9(5): 055001. doi: 10.1149/2162-8777/ab915d
    [65] DING K, AVRUTIN V, IZYUMSKAYA N, et al. Micro-LEDs, a manufacturability perspective[J]. Applied Sciences, 2019, 9(6): 1206. doi: 10.3390/app9061206
    [66] 王玮东, 楚春双, 张丹扬, 等. 俄歇复合、电子泄漏和空穴注入对深紫外发光二极管效率衰退的影响[J]. 发光学报,2021,42(7):897-903. doi: 10.37188/CJL.20210102

    WANG W D, CHU CH SH, ZHANG D Y, et al. Impact of auger recombination, electron leakage and hole injection on efficiency droop for DUV LEDs[J]. Chinese Journal of Luminescence, 2021, 42(7): 897-903. (in Chinese) doi: 10.37188/CJL.20210102
    [67] JIA X T, ZHOU Y G, LIU B, et al. A simulation study on the enhancement of the efficiency of GaN-based blue light-emitting diodes at low current density for micro-LED applications[J]. Materials Research Express, 2019, 6(10): 105915. doi: 10.1088/2053-1591/ab3f7b
    [68] HERRNSDORF J, MCKENDRY J J D, ZHANG SH L, et al. Active-matrix GaN micro light-emitting diode display with unprecedented brightness[J]. IEEE Transactions on Electron Devices, 2015, 62(6): 1918-1925. doi: 10.1109/TED.2015.2416915
    [69] CHANG L, YEH Y W, HANG SH, et al. Alternative strategy to reduce surface recombination for InGaN/GaN micro-light-emitting diodes-thinning the quantum barriers to manage the current spreading[J]. Nanoscale Research Letters, 2020, 15(1): 160. doi: 10.1186/s11671-020-03372-3
    [70] LIU SH G, HAN S C, XU CH CH, et al. Enhanced photoelectric performance of GaN-based micro-LEDs by ion implantation[J]. Optical Materials, 2021, 121: 111579. doi: 10.1016/j.optmat.2021.111579
    [71] CORFDIR P, LEWIS R B, MARQUARDT O, et al. Exciton recombination at crystal-phase quantum rings in GaAs/In x Ga1− x As core/multishell nanowires[J]. Applied Physics Letters, 2016, 109(8): 082107. doi: 10.1063/1.4961245
    [72] YANG Y, CAO X A. Removing Plasma-induced sidewall damage in GaN-based light-emitting diodes by annealing and wet chemical treatments[J]. Journal of Vacuum Science & Technology B, 2009, 27(6): 2337-2341.
    [73] CAO X A, CHO H, PEARTON S J, et al. Depth and thermal stability of dry etch damage in GaN schottky diodes[J]. Applied Physics Letters, 1999, 75(2): 232-234. doi: 10.1063/1.124332
    [74] JUNG B O, LEE W, KIM J, et al. Enhancement in external quantum efficiency of AlGaInP red μ-LED using chemical solution treatment process[J]. Scientific Reports, 2021, 11(1): 4535. doi: 10.1038/s41598-021-83933-3
    [75] WONG M S, NAKAMURA S, DENBAARS S P. Review-progress in high performance III-nitride micro-light-emitting diodes[J]. ECS Journal of Solid State Science and Technology, 2019, 9(1): 015012.
    [76] YANG C M, KIM D S, LEE S G, et al. Improvement in electrical and optical performances of GaN-based LED with SiO2/Al2O3 double dielectric stack layer[J]. IEEE Electron Device Letters, 2012, 33(4): 564-566. doi: 10.1109/LED.2012.2185675
    [77] YANG C M, KIM D S, PARK Y S, et al. Enhancement in light extraction efficiency of GaN-based light-emitting diodes using double dielectric surface passivation[J]. Optics and Photonics Journal, 2012, 2(3): 185-192. doi: 10.4236/opj.2012.23028
    [78] LEY R T, SMITH J M, WONG M S, et al. Revealing the importance of light extraction efficiency in InGaN/GaN microLEDs via chemical treatment and dielectric passivation[J]. Applied Physics Letters, 2020, 116(25): 251104. doi: 10.1063/5.0011651
    [79] SON K S, CHOI D L, LEE H N, et al. The interfacial reaction between ITO and silicon nitride deposited by PECVD in fringe field switching device[J]. Current Applied Physics, 2002, 2(3): 229-232. doi: 10.1016/S1567-1739(02)00092-5
    [80] GUENTHER G, SCHIERNING G, THEISSMANN R, et al. Formation of metallic indium-tin phase from indium-tin-oxide nanoparticles under reducing conditions and its influence on the electrical properties[J]. Journal of Applied Physics, 2008, 104(3): 034501. doi: 10.1063/1.2958323
    [81] HUANG S W, SHEN C C, WU T ZH, et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer[J]. Photonics Research, 2019, 7(4): 416-422. doi: 10.1364/PRJ.7.000416
    [82] KUANG H, TAN D Q, HE W, et al. Oxidation behavior of multilayer hard coatings (TiCN/Al2O3/TiN) in process of recycling coated multicomponent hardmetal scrap[J]. Materials, 2018, 11(10): 1796. doi: 10.3390/ma11101796
    [83] KUANG H, TAN D Q, HE W, et al. Mechanism of multi-layer composite coatings in the zinc process of recycling coated WC-Co cemented-carbide scrap[J]. Materiali in Tehnologije, 2017, 51(6): 997-1003. doi: 10.17222/mit.2017.049
    [84] WONG M S, LEE C, MYERS D J, et al. Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation[J]. Applied Physics Express, 2019, 12(9): 097004. doi: 10.7567/1882-0786/ab3949
    [85] 王伟, 赵甜甜, 刘强, 等. Mini/Micro LED巨量转移技术研究与发展现状[J]. 光学 精密工程,2023,31(2):183-199. doi: 10.37188/OPE.20233102.0183

    WANG W, ZHAO T T, LIU Q, et al. Research and development status of Mini/Micro LED mass transfer technology[J]. Optics and Precision Engineering, 2023, 31(2): 183-199. (in Chinese) doi: 10.37188/OPE.20233102.0183
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  409
  • HTML全文浏览量:  75
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-15
  • 修回日期:  2023-06-02
  • 网络出版日期:  2023-09-26

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!