留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小闪耀角单晶硅光栅结构参数优化及制备工艺

徐昊宇 姜岩秀 陈星硕 王瑞鹏 张靖 巴音贺希格

徐昊宇, 姜岩秀, 陈星硕, 王瑞鹏, 张靖, 巴音贺希格. 小闪耀角单晶硅光栅结构参数优化及制备工艺[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0056
引用本文: 徐昊宇, 姜岩秀, 陈星硕, 王瑞鹏, 张靖, 巴音贺希格. 小闪耀角单晶硅光栅结构参数优化及制备工艺[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0056
XU Hao-Yu, JIANG Yan-Xiu, CHEN Xing-Shuo, WANG Rui-Peng, ZHANG Jing, Bayanheshig. Optimization of structural parameters and fabrication of small blazed angle monocrystalline silicon gratings[J]. Chinese Optics. doi: 10.37188/CO.2023-0056
Citation: XU Hao-Yu, JIANG Yan-Xiu, CHEN Xing-Shuo, WANG Rui-Peng, ZHANG Jing, Bayanheshig. Optimization of structural parameters and fabrication of small blazed angle monocrystalline silicon gratings[J]. Chinese Optics. doi: 10.37188/CO.2023-0056

小闪耀角单晶硅光栅结构参数优化及制备工艺

doi: 10.37188/CO.2023-0056
基金项目: 国家自然科学基金项目(No.U21A20509);中国科学院关键核心技术攻关项目(No.20200602051ZP);吉林省自然科学基金项目(No.20210101139JC);中国科学院科学仪器设备开发项目(No.YJKYYQ20200003);中国科学院青年创新促进会项目(No.2022218)
详细信息
    作者简介:

    徐昊宇(1996—),女,吉林长春人,硕士研究生,2018年于河北工业大学大学获得学士学位,主要从事光栅设计及光栅制备方面的研究。E-mail:xuhy7686@163.com

    姜岩秀(1987—),女,吉林舒兰人,博士,副研究员, 2015年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事变栅距全息光栅设计与制作技术研究。E-mail:jiangyanxiup@ 163.com

    巴音贺希格(1962—),男,内蒙古鄂尔多斯人,博士,研究员,博士生导师,2004年于中国科学院长春光学精密机被与物理研究所获得博士学位,主要从事光栅理论、光栅制作技术及光谱技术的研究。E-mail:bayin888@sina.com

  • 中图分类号: TP394.1;TH691.9

Optimization of structural parameters and fabrication of small blazed angle monocrystalline silicon gratings

Funds: Supported by National Natural Science Foundation of China (No. U21A20509); Key Core Technology Research Project of Chinese Academy of Sciences (No. 20200602051ZP); Natural Science Foundation of Jilin Province (No. 20210101139JC); Scientific Instrument and Equipment Development Project of Chinese Academy of Sciences (No. YJKYYQ20200003); Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2022218)
More Information
  • 摘要:

    为了满足国家同步辐射光源的需要,对单晶硅小闪耀角光栅的各向异性湿法刻蚀制备工艺展开了研究,制备适用于软X射线中波波段的闪耀光栅。首先基于严格耦合波法对小闪耀角光栅进行了结构参数优化及工艺容差分析。在晶向对准过程中,先通过环形预刻蚀确定硅片晶向,再基于倍频调整法实现光栅掩模与单晶硅<111>晶向的对准。同时研究了光刻胶灰化技术及活性剂对光栅槽形质量的影响,并通过单晶硅各向异性湿法刻蚀工艺成功制备了接近于理想锯齿槽形的闪耀光栅。实验结果证明:所制备光栅闪耀角为1°,刻线密度为1200 gr/mm,闪耀面均方根粗糙度在0.5 nm以内。此方法可以应用于软X射线中波波段闪耀光栅的制作,在获得较高衍射效率的同时可以大大减少其制作难度及成本。

     

  • 图 1  不同状态入射光随波长变化的衍射效率

    Figure 1.  Diffraction efficiency of incident light as a function of wavelength in different states

    图 2  不同刻线密度光栅随波长变化的衍射效率

    Figure 2.  Diffraction efficiency of gratings with different grating densities as a function of wavelength

    图 3  不同闪耀角光栅随波长变化的衍射效率

    Figure 3.  Diffraction efficiency of gratings with different flare angles as a function of wavelength

    图 4  设计光栅槽形

    Figure 4.  Design the grating groove

    图 5  不同平台占宽比光栅随波长变化的衍射效率

    Figure 5.  Diffraction efficiency of grating with different platform ratio as a function of wavelength

    图 6  不同平台高度h光栅随占宽比f变化的衍射效率

    Figure 6.  Diffraction efficiency of grating with different platform height h as a function of aspect ratio f

    图 7  不同平台高度h光栅随占宽比f变化的衍射效率

    Figure 7.  Diffraction efficiency of grating with different platform height h as a function of aspect ratio f

    图 8  晶向对准流程图

    Figure 8.  Crystal alignment flow chart

    图 9  用于预刻蚀工艺的掩模图形

    Figure 9.  Mask patterns for pre-etching processes

    图 10  刻蚀后硅片及其微观结构

    Figure 10.  Etched silicon wafer and its microstructure

    图 11  刻蚀后条纹宽度

    Figure 11.  Fringe width after etching

    图 12  掩模板对准原理

    Figure 12.  Schematic diagram of mask alignment

    图 13  对准时的莫尔条纹

    Figure 13.  Moire fringe after crystalline alignment

    图 14  光栅制备工艺流程(a)硅片清洁;(b)氧化层制备;(c)旋涂光刻胶;(d)对准曝光;(e)显影;(f)光刻胶图形转移;(g)氧化层掩模制备;(h)湿法刻蚀;(i)去除表面掩模

    Figure 14.  Grating preparation process (a) silicon wafer cleaning; (b) preparation of oxide layer; (c) spin coated photoresist; (d) alignment exposure; (e) development; (f) photoresist pattern transfer; (g) preparation of oxide mask; (h) wet etching; (i) remove the surface mask

    图 15  光刻胶掩模灰化前与灰化后

    Figure 15.  Photoresist mask before and after ashing

    图 16  使用异丙醇前后光栅表面的粗糙度对比

    Figure 16.  Comparison of grating surface roughness before and after using isopropanol

    图 17  闪耀光栅AFM图样

    Figure 17.  AFM test pattern of blazed grating

    图 18  槽形对比

    Figure 18.  Comparison of different grooves

    图 19  光栅衍射效率

    Figure 19.  Grating diffraction efficiency

    表  1  光栅技术指标

    Table  1.   Specification of grating

    指标参数 数值
    波长范围/nm 3-6
    衍射级次 −1
    入射状态 掠入射
    衍射效率 >40%
    下载: 导出CSV

    表  2  光栅槽形参数

    Table  2.   Grating groove parameter

    槽形参数数值
    闪耀角/(°)1±0.1
    周期/nm833
    f0<f<0.3
    h/nm0<h<8
    下载: 导出CSV

    表  3  AFM粗糙度测量结果(单位:nm)

    Table  3.   AFM Roughness Measurement Results (Unit: nm)

    测量点Rq
    10.287
    20.436
    30.365
    40.253
    50.220
    60.379
    70.409
    80.293
    90.333
    100.400
    平均值0.3375
    下载: 导出CSV

    表  4  闪耀角测量结果

    Table  4.   Blazed angle measurement results

    测量点闪耀角
    10.969°
    21.023°
    30.974°
    41.015°
    51.009°
    平均值0.998°
    下载: 导出CSV
  • [1] 焦毅, 潘卫民. 高能同步辐射光源[J]. 强激光与粒子束,2022,34(10):104002.

    JIAO Y, PAN W M. High energy photon source[J]. High Power Laser and Particle Beams, 2022, 34(10): 104002. (in Chinese)
    [2] JIN S SH, ZHAO Y K, SUN B G, et al. Design of an interference system for measuring the transverse beam size in HLS-II[J]. International Journal of Optomechatronics, 2022, 16(1): 18-28. doi: 10.1080/15599612.2022.2048151
    [3] JOSIFOVSKA N, ANDJELIC S, LUMI X, et al. Synchrotron-based FTIR microspectroscopy of human primary retinal pigmented epithelial cells as a model for age-related macular degeneration[J]. Acta Ophthalmologica, 2022, 100(S275). .
    [4] NALETTO G, TONDELLO G, CIMINO R. Design of a high-flux low-energy synchrotron radiation monochromator[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 556(1): 371-378.
    [5] ALEXANDER J, BANERJEE N, VAN LOON L. Application of synchrotron radiation X-ray diffraction (SR-XRD) and electron probe microanalysis to understanding gold mineralization at the vertigo target, White Gold District, west-Central Yukon Territory, Canada[J]. Microscopy and Microanalysis, 2020, 26(S2): 994-997. doi: 10.1017/S1431927620016608
    [6] WADDINGHAM M T, TSUCHIMOCHI H, SONOBE T, et al. Using synchrotron radiation imaging techniques to elucidate the actions of hexarelin in the heart of small animal models[J]. Frontiers in Physiology, 2022, 12: 766818. doi: 10.3389/fphys.2021.766818
    [7] 张宝庆, 于硕, 吉日嘎兰图, 等. 铝膜层数对机械刻划光栅塑性成槽过程的影响[J]. 塑性工程学报,2021,28(10):141-147.

    ZHANG B Q, YU SH, JIRIGALANTU, et al. Effect of aluminum film layer number on plastic grooving process of mechanical grating ruling[J]. Journal of Plasticity Engineering, 2021, 28(10): 141-147. (in Chinese)
    [8] JIRIGALANTU, LI X T, ZHANG SH W, et al. Ruling of echelles and gratings with a diamond tool by the torque equilibrium method[J]. Applied Optics, 2016, 55(28): 8082-8088. doi: 10.1364/AO.55.008082
    [9] MAMUN M A A, CADUSCH P J, KATKUS T, et al. Quantifying end-face quality of cleaved fibers: femtosecond laser versus mechanical scribing[J]. Optics and Laser Technology, 2021, 141: 107111. doi: 10.1016/j.optlastec.2021.107111
    [10] 王琼, 沈晨, 谭鑫, 等. 摆动刻蚀法制作高衍射效率凸面闪耀光栅[J]. 强激光与粒子束,2019,31(6):061001. doi: 10.11884/HPLPB201931.180298

    WANG Q, SHEN CH, TAN X, et al. Fabrication of high-efficiency convex blazed gratings by swing ion beam etching[J]. High Power Laser and Particle Beams, 2019, 31(6): 061001. (in Chinese) doi: 10.11884/HPLPB201931.180298
    [11] ZHANG K D, LI H SH, ZHANG CH, et al. Effect of ion beam etching on the tribological performance of laser textured Co-Cr-Mo alloy[J]. Optics & Laser Technology, 2023, 160: 109097.
    [12] SHEN CH, TAN X, JIAO Q B, et al. Convex blazed grating of high diffraction efficiency fabricated by swing ion-beam etching method[J]. Optics express, 2018, 26(19): 25381-25398. doi: 10.1364/OE.26.025381
    [13] 杨子江, 潘俏, 朱嘉诚, 等. 紫外光刻-湿法刻蚀硅中阶梯光栅的研制[J]. 光学学报,2023,43(13):1305001. doi: 10.3788/AOS230446

    YANG Z J, PAN Q, ZHU J CH, et al. Fabrication of silicon echelle grating by ultraviolet lithography combined with wet etching[J]. Acta Optica Sinica, 2023, 43(13): 1305001. (in Chinese) doi: 10.3788/AOS230446
    [14] GAO J, CHEN P, WU L, et al. A review on fabrication of blazed gratings[J]. Journal of Physics D:Applied Physics, 2021, 54(31): 313001. doi: 10.1088/1361-6463/abfd6a
    [15] 聂秋玉. 基于偏晶向(111)硅基的MOEMS扫描光栅微镜关键技术研究[D]. 重庆: 重庆大学, 2017.

    NIE Q Y. Research on key technologies of MOEMS scanning grating mirror based on tilted (111) silicon wafer[D]. Chongqing: Chongqing University, 2017. (in Chinese)
    [16] JIAO Q B, ZHU CH L, TAN X, et al. The effect of ultrasonic vibration and surfactant additive on fabrication of 53.5 gr/mm silicon echelle grating with low surface roughness in alkaline KOH solution[J]. Ultrasonics Sonochemistry, 2018, 40: 937-943. doi: 10.1016/j.ultsonch.2017.09.011
    [17] SHENG B, XU X D, LIU Y, et al. Vacuum-ultraviolet blazed silicon grating anisotropically etched by native-oxide mask[J]. Optics Letters, 2009, 34(8): 1147-1149. doi: 10.1364/OL.34.001147
    [18] VORONOV D L, LUM P, NAULLEAU P, et al. X-ray diffraction gratings: precise control of ultra-low blaze angle via anisotropic wet etching[J]. Applied Physics Letters, 2016, 109: 043112. doi: 10.1063/1.4960203
    [19] MOKHOV D V, BEREZOVSKAYA T N, SHUBINA K Y, et al. Optimization of triangular-profiled Si-grating fabrication technology for EUV and SXR applications[J]. Technical Physics, 2022, 67(8): 1009-1014.
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  28
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 网络出版日期:  2023-09-18

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!