留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大能量碟片激光多通放大器腔体设计研究综述

陈毅 孙俊杰 于晶华 姚志焕 张逸文 于德洋 何洋 张阔 潘其坤 陈飞

陈毅, 孙俊杰, 于晶华, 姚志焕, 张逸文, 于德洋, 何洋, 张阔, 潘其坤, 陈飞. 大能量碟片激光多通放大器腔体设计研究综述[J]. 中国光学(中英文), 2023, 16(5): 996-1009. doi: 10.37188/CO.2023-0009
引用本文: 陈毅, 孙俊杰, 于晶华, 姚志焕, 张逸文, 于德洋, 何洋, 张阔, 潘其坤, 陈飞. 大能量碟片激光多通放大器腔体设计研究综述[J]. 中国光学(中英文), 2023, 16(5): 996-1009. doi: 10.37188/CO.2023-0009
CHEN Yi, SUN Jun-jie, YU Jing-hua, YAO Zhi-huan, ZHANG Yi-wen, YU De-yang, HE Yang, ZHANG Kuo, PAN Qi-kun, CHEN Fei. Review of the cavity-design of high-energy thin-disk laser multi-pass amplifiers[J]. Chinese Optics, 2023, 16(5): 996-1009. doi: 10.37188/CO.2023-0009
Citation: CHEN Yi, SUN Jun-jie, YU Jing-hua, YAO Zhi-huan, ZHANG Yi-wen, YU De-yang, HE Yang, ZHANG Kuo, PAN Qi-kun, CHEN Fei. Review of the cavity-design of high-energy thin-disk laser multi-pass amplifiers[J]. Chinese Optics, 2023, 16(5): 996-1009. doi: 10.37188/CO.2023-0009

大能量碟片激光多通放大器腔体设计研究综述

doi: 10.37188/CO.2023-0009
基金项目: 长春光机所创新重大项目(No. E10302Y3M0);吉林省青年成长科技计划项目(No. 20220508041RC)
详细信息
    作者简介:

    陈 毅(1991—),男,新疆昌吉人,博士,工程师,2020年于哈尔滨工业大学获得博士学位,主要从事碟片激光技术与长波红外激光方面的研究。E-mail:chenyihit@163.com

    孙俊杰(1994—),女,吉林长春人,硕士,助理研究员,2017年于国防科技大学获得硕士学位,主要从事新型激光技术及应用研究。E-mail:15143115236@163.com

    陈 飞(1982—),男,河南南阳人,博士,研究员,2011年于哈尔滨工业大学获得博士学位,主要从事新型激光技术及应用研究。E-mail:feichenny@126.com

  • 中图分类号: TN248

Review of the cavity-design of high-energy thin-disk laser multi-pass amplifiers

Funds: Supported by Innovate Major Project, CIOMP (No. E10302Y3M0); Jilin Province Youth Growth Science and Technology Project (No. 20220508041RC)
More Information
  • 摘要:

    为了明晰碟片多通放大器的腔体设计方法,本文对不同类型的碟片多通放大器做归纳与总结,共归纳出4f中继成像、谐振腔设计/光学傅立叶变换、近准直光束传输与其他共4种设计理念的多通放大器。介绍了每种放大器的设计方法并详尽列举了研究现状。通过对比4种类型的碟片多通放大器,发现不同种类的多通放大器各有优缺点。4f中继成像需要真空环境以避免焦点处的气体电离,因此机械装置与调试难度较大;谐振腔设计/光学傅立叶变换概念多通放大器的镜片处存在较小光斑,因此较适用于较低能量的多通放大器;近准直光束传输方法由于不需要真空环境,具备很大的发展潜力,但需要精准控制激光运转状态下的碟片面形,难度也较大。因此,从激光器设计角度来看,需要对碟片多通放大器继续进行优化设计,从而同时实现使用场景的多元化与输出能量的可持续拓展。

     

  • 图 1  4f中继传输系统。带有两个透镜的中继成像可再现碟片上激光束的相位和强度分布[6]

    Figure 1.  4f relay transmission system. Relay imaging with two lenses to reproduce the phase and intensity distribution of the laser beam on the thin clisk[6]

    图 2  不同半径、不同波前曲率的光束在4f系统内传输情况(碟片光焦度为0,光焦度指焦距的倒数)

    Figure 2.  Graph of beams with different spot radii and wavefront curvatures propagating in a 4f system (The diopter of thin-disk is 0, and the diopter refers to the reciprocal of the focal length)

    图 3  不同碟片晶体光焦度时光束在5个串联4f系统内的传输情况

    Figure 3.  Transmission curves of beams within 5 tandem 4f systems when the diopter of the thin-disk is different

    图 4  (a)包含一个透镜和两个棱镜对的4f系统光路;(b) 通过透镜的光束位置[6]

    Figure 4.  (a) Optical path of a 4f system consisting of one lens and two prism pairs; (b) position of the beam passing through the lens[6]

    图 5  包含抛物面镜与棱镜的碟片多通放大器[6]

    Figure 5.  Thin-disk multi-pass amplifier with parabolic mirrors and prisms[6]

    图 6  基于4f中继成像的12通碟片放大器[7]

    Figure 6.  12-pass thin-disk amplifier based on 4f relay imaging[7]

    图 7  基于4f中继成像的14通碟片放大器[10]

    Figure 7.  14-pass thin-disk amplifier based on 4f relay imaging

    图 8  基于双碟片4f系统的18通放大器[8, 11]

    Figure 8.  18-pass amplifier based on a dual thin-disk 4f system[8, 11]

    图 9  基于4f中继成像系统的14通放大器。(a)单碟片双通放大器俯视图;(b)非折叠的光路传输示意图;(c)碟片多通放大器实物图[12]

    Figure 9.  14 pass amplifier based on 4f relay imaging system. (a) Top view of the single thin-disk dual-pass amplifier; (b) schematic diagram of non-folded optical path transmission; (c) physical diagram of the thin-disk multi-pass amplifier[12]

    图 10  带有补偿镜、基于中继成像的碟片多通放大器俯视图[14]

    Figure 10.  Top view of the thin-disk multi-pass amplifier with compensation mirror based on relay imaging[14]

    图 11  改进中继成像光路图(使用一个补偿镜代替抛物面镜与补偿镜)[16]

    Figure 11.  Improved relay imaging optical path diagram (Using a compensating mirror instead of a parabolic mirror with a compensating mirror)[16]

    图 12  基于4f中继成像+万花筒系统的碟片12通放大器[20]

    Figure 12.  Thin-disk 12-pass amplifier based on a 4f relay imaging + kaleidoscope system[20]

    图 13  基于双4f中继成像系统的碟片64通放大器[13]

    Figure 13.  Thin-disk 64 pass amplifier based on a dual 4f relay imaging system[13]

    图 14  24通放大器的光路示意图。(a)光路连续通过1-disk-2-K2-3-disk-4-K1-5-disk-6-K2-7。其中:1~7代表图14(b)中的镜片编号;K1、K2分别表示凹面反射镜K1与凸面反射镜K2;K1—K2定义了光学稳定腔。(b)反射镜阵列编号与其他元件的侧面投影位置

    Figure 14.  Schematic diagram of the optical path of the 24-pass amplifier. (a) The optical path passes continuously through 1-disk-2-K2-3-disk-4-K1-5-disk-6-K2-7, where 1-7 represents the mirror numbers in Figure 14 (b), K1 and K2 represent the concave mirror K1 and convex mirror K2, respectively. K1-K2 defines the optical stable cavity. (b) The reflector array number and the lateral projection position of other elements

    图 15  16通4f放大器与光学傅立叶传输多通放大器的(a)输出光斑与(b)波前曲率倒数随碟片晶体光焦度的变化。红色虚线代表4f多通放大器,蓝色实线代表光学傅立叶传输多通放大器,灰色实线代表理想情况的光学傅立叶传输多通放大器[24]

    Figure 15.  Variation in (a) output spot and (b) wavefront curvature inverse with a diopter of thin-disk for the 16-pass 4f amplifier and optical Fourier transmission multi-pass amplifier. The red dashed line represents the 4f multi-pass amplifier, the blue solid line represents the optical Fourier transmission multi-pass amplifier, and the gray solid line represents the optical Fourier transmission multi-pass amplifier in ideal circumstances[24]

    图 16  基于光学傅立叶传输的8通放大器的光束传播。(黑线代表碟片晶体光焦度为0,红线和蓝线代表碟片晶体光焦度分别为±1/(40f)的光束传播,f为4f系统的焦距)[24]

    Figure 16.  Beam propagation of an 8-pass amplifier based on optical Fourier transmission. (The black line represents the diopter of the thin-disk at 0. The red and blue lines represent the diopter of the thin-disk are ±1/(40f), and f is the focal length of the 4f system)[24]

    图 17  实际使用的光学傅立叶变换8通放大器的光束传播缩短了传输距离。(黑线代表碟片晶体光焦度为0,红线和蓝线代表碟片晶体光焦度=±1/(40f)对应的光束传播,f为4f系统的焦距)[24]

    Figure 17.  Beam propagation of a practical optical Fourier transform 8-pass amplifier that shortens the transmission distance. (The black line represents the diopter of the thin-disk at 0. The red and blue lines represent the diopter of the thin-disk = ±1/(40f), and f is the focal length of the 4f system)[24]

    图 18  20通放大器的(a)俯视[25]、(b)立体光路图与(c)镜片阵列实物图[25]

    Figure 18.  (a) Top view[25], (b) stereo optical path diagrams, and (c) physical view of the lens array[25] of the 20-pass amplifier

    图 19  (a)垂直后向反射镜实物图[26],(b)垂直后向反射镜与平面反射镜的光路对比

    Figure 19.  (a) Physical drawing of the vertical retro-reflector[26]; (b) comparison of the optical path between the vertical retro-reflector and the plane reflector

    图 20  配备主动稳定系统的傅立叶传输多通放大器[26]

    Figure 20.  Fourier transmission multi-pass amplifier with an active stabilization system[26]

    图 21  测量的3个八通放大器的小信号增益与碟片偏角ϕ的关系。红色线代表常规傅立叶传输多通放大器,蓝色符号取自相同放大器但M2镜片被垂直后向反射镜代替,绿色符号代表配备主动稳定系统的傅立叶传输多通放大器[26]

    Figure 21.  The relationship between the small signal gain of three eight-pass amplifiers and the measured deflection angle of the thin-disk. The red symbols represent conventional Fourier transmission multi-pass amplifiers, the blue symbols are taken from the same amplifiers but with the M2 lens being replaced by a vertical rearward reflector, and the green symbols represent the Fourier transmission multi-pass amplifiers equipped with an active stabilization system[26]

    图 22  近准直光束传输多通放大器光路图[27]

    Figure 22.  Optical path diagram of the near collimated beam propagation multi-pass amplifier[27]

    图 23  皮秒多通放大器的(a)整体光路布局、(b)多通池光路图与(c)镜片单阵列实物图[40]

    Figure 23.  (a) Overall optical path layout of picosecond multi-pass amplifier, (b) optical path of a multipass cell and (c) picture of a single array of mirrors[40]

    图 24  皮秒多通放大器光路中的光斑半径分布[40]

    Figure 24.  Spot radius distribution in the optical path of the picosecond multi-pass amplifier[40]

    图 25  720 mJ皮秒激光器整体光路图[41]

    Figure 25.  Overall optical path of the 720 mJ picosecond laser[41]

    图 26  碟片大口径环形放大器光路图[43]

    Figure 26.  Optical path diagram of the thin-disk large-aperture ring amplifier[43]

    图 27  部分已报告的多通放大器输出激光参数。(a)脉冲重频vs脉冲能量,(b)脉冲宽度vs峰值功率,(c)平均输出功率vs峰值功率

    Figure 27.  The output laser parameters of some reported multi-pass amplifiers. (a) Pulse repetition frequency vs pulse energy, (b) pulse width vs peak power, and (c) average output power vs peak power

    表  1  ${\bf{4}}{\boldsymbol{f}} $系统传输前后的光束参数

    Table  1.   Beam parameters before and after 4f system transmission

    光束1光束2光束3
    入射前
    参数
    光斑半径0.12 mm光斑半径1.5 mm光斑半径3 mm
    波前曲率半径1 m波前曲率半径1 m波前曲率半径106 m
    传输后
    参数
    光斑半径0.12 mm光斑半径1.5 mm光斑半径3 mm
    波前曲率半径1 m波前曲率半径1 m波前曲率半径106 m
    下载: 导出CSV

    表  2  4种碟片多通放大器的优缺点

    Table  2.   Advantages and disadvantages of four types of thin-disk multi-pass amplifiers

    方案名称优点缺点
    4f中继成像任何热透镜焦距下,均能复现光斑尺寸,光路设计简单光束发散角随热透镜焦距变化剧烈,光束焦点处容易电离空气,需要真空环境运行或令焦点位于真空管内
    4f中继成像——低温制冷单次增益高、热光性能优异,光路设计简单需要液氮等低温制冷,同时需要真空环境
    谐振腔设计/光学傅立叶变换抗热透镜变化性能优于4f中继成像镜片上存在较小尺寸光斑,对镜片损伤阈值要求高;未进行皮秒脉冲放大实验,停留在理论阶段
    近准直光束传输可在空气环境运行,无空气电离需要精心设计的碟片光焦度
    其他
    下载: 导出CSV
  • [1] 张世达, 耿乙迦. 碲化铋倏逝场锁模器件的超快光纤激光器[J]. 中国光学,2022,15(3):433-442. doi: 10.37188/CO.2021-0216

    ZHANG SH D, GENG Y J. Ultrafast fiber laser based on bismuth telluride evanescent field mode-locked device[J]. Chinese Optics, 2022, 15(3): 433-442. (in Chinese) doi: 10.37188/CO.2021-0216
    [2] 徐飞, 潘其坤, 陈飞, 等. 中红外Fe2+: ZnSe激光器研究进展[J]. 中国光学,2021,14(3):458-469. doi: 10.37188/CO.2020-0180

    XU F, PAN Q K, CHEN F, et al. Development progress of Fe2+: ZnSe lasers[J]. Chinese Optics, 2021, 14(3): 458-469. (in Chinese) doi: 10.37188/CO.2020-0180
    [3] 牛娜, 窦微, 浦双双, 等. 蓝光二极管抽运Pr: YLF腔内倍频连续深紫外激光器[J]. 中国光学,2021,14(6):1395-1399. doi: 10.37188/CO.2021-0077

    NIU N, DOU W, PU SH SH, et al. Continuous deep ultraviolet laser by intracavity frequency doubling of blue laser diode pumped Pr: YLF[J]. Chinese Optics, 2021, 14(6): 1395-1399. (in Chinese) doi: 10.37188/CO.2021-0077
    [4] NUBBEMEYER T, KAUMANNS M, UEFFING M, et al. 1kW, 200 mJ picosecond thin-disk laser system[J]. Optics Letters, 2017, 42(7): 1381-1384. doi: 10.1364/OL.42.001381
    [5] KRÖTZ P, WANDT C, GREBING C, et al. . Towards 2 kW, 20 kHz ultrafast thin-disk based regenerative amplifiers[C]. Advanced Solid State Lasers 2019, Optica Publishing Group, 2019: ATh1A. 8.
    [6] MÜLLER D, ERHARD S, RONSIN O, et al. . Thin disk multi-pass amplifier[C]. Advanced Solid-State Photonics 2003, Optica Publishing Group, 2003: 278.
    [7] LOESER M, SIEBOLD M, ROESER F, et al. . High energy CPA-free picosecond Yb: YAG amplifier[C]. Advanced Solid-State Photonics 2012, Optica Publishing Group, 2012: AM4A. 16.
    [8] FRIEBEL F, PELLEGRINA A, PAPADOPOULOS D N, et al. . 57-mJ 20-Hz multipass laser amplifier based on Yb: CaF2 crystals[C]. Advanced Solid State Lasers 2013, Optica Publishing Group, 2013: ATu3A. 21.
    [9] ZAPATA L E, LIN H, CALENDRON A L, et al. Cryogenic Yb: YAG composite-thin-disk for high energy and average power amplifiers[J]. Optics Letters, 2015, 40(11): 2610-2613. doi: 10.1364/OL.40.002610
    [10] SIEBOLD M, LOESER M, ROESER F, et al. High-energy, ceramic-disk Yb: LuAG laser amplifier[J]. Optics Express, 2012, 20(20): 21992-22000. doi: 10.1364/OE.20.021992
    [11] FRIEBEL F, PELLEGRINA A, PAPADOPOULOS D N, et al. Diode-pumped Yb: CaF2 multipass amplifier producing 50 mJ with dynamic analysis for high repetition rate operation[J]. Applied Physics B, 2014, 117(2): 597-603. doi: 10.1007/s00340-014-5872-4
    [12] ZWILICH M, EWERS B. Coherent beam combining of multipass thin-disk lasers with active phase control[J]. OSA Continuum, 2020, 3(11): 3176-3186. doi: 10.1364/OSAC.404658
    [13] PEREVEZENTSEV E, KUZNETSOV I, MUKHIN I, et al. Matrix multi-pass scheme disk amplifier[J]. Applied Optics, 2017, 56(30): 8471-8476. doi: 10.1364/AO.56.008471
    [14] SPEISER J. Thin disk lasers: history and prospects[J]. Proceedings of SPIE, 2016, 9893: 98930L.
    [15] OCHI Y, NAGASHIMA K, MARUYAMA M, et al. . Effective multi-pass amplification system for Yb: YAG thin-disk laser[C]. Laser Applications Conference 2017, Optica Publishing Group, 2017: JTh2A. 31.
    [16] KÖRNER J, HEIN J, KALUZA M C. Compact aberration-free relay-imaging multi-pass layouts for high-energy laser amplifiers[J]. Applied Sciences, 2016, 6(11): 353. doi: 10.3390/app6110353
    [17] SMRŽ M, MUŽÍK J, NOVÁK O, et al. Progress in kW-class picosecond thin-disk lasers development at the HiLASE[J]. Proceedings of SPIE, 2016, 9726: 972617.
    [18] FAN T Y, RIPIN D J, AGGARWAL R L, et al. Cryogenic Yb3+-doped solid-state lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 448-459. doi: 10.1109/JSTQE.2007.896602
    [19] KOERNER J, VORHOLT C, LIEBETRAU H, et al. Measurement of temperature-dependent absorption and emission spectra of Yb: YAG, Yb: LuAG, and Yb: CaF2 between 20 °C and 200 °C and predictions on their influence on laser performance[J]. Journal of the Optical Society of America B, 2012, 29(9): 2493-2502. doi: 10.1364/JOSAB.29.002493
    [20] CALENDRON A L, ZAPATA L E, ÇANKAYA H, et al. . Optimized temperature/bandwidth operation of cryogenic Yb: YAG composite thin-disk laser amplifier[C]. High Intensity Lasers and High Field Phenomena 2014, Optica Publishing Group, 2014: JW2A. 10.
    [21] ANTOGNINI A, SCHUHMANN K, AMARO F D, et al. Thin-disk Yb: YAG oscillator-amplifier laser, ASE, and effective Yb: YAG lifetime[J]. IEEE Journal of Quantum Electronics, 2009, 45(8): 993-1005. doi: 10.1109/JQE.2009.2014881
    [22] SCHUHMANN K, ANTOGNINI A, KIRCH K, et al. . Thin-disk laser for the measurement of the radii of the proton and the alpha-particle[C]. Advanced Solid State Lasers 2013, Optica Publishing Group, 2013: ATu3A. 46.
    [23] TÜMMLER J, JUNG R, STIEL H, et al. High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy[J]. Optics Letters, 2009, 34(9): 1378-1380. doi: 10.1364/OL.34.001378
    [24] SCHUHMANN K, KIRCH K, MARSZALEK M, et al. Multipass amplifiers with self-compensation of the thermal lens[J]. Applied Optics, 2018, 57(35): 10323-10333. doi: 10.1364/AO.57.010323
    [25] ZEYEN M, ANTOGNINI A, KIRCH K, et al. Compact 20-pass thin-disk amplifier insensitive to thermal lensing[J]. Proceedings of SPIE, 2019, 10896: 108960X.
    [26] SCHUHMANN K, KIRCH K, KNECHT A, et al. Passive alignment stability and auto-alignment of multipass amplifiers based on Fourier transforms[J]. Applied Optics, 2019, 58(11): 2904-2912. doi: 10.1364/AO.58.002904
    [27] NEGEL J P, VOSS A, AHMED M A, et al. 1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses[J]. Optics Letters, 2013, 38(24): 5442-5445. doi: 10.1364/OL.38.005442
    [28] SCHUHMANN K, AHMED M A, ANTOGNINI A, et al. Thin-disk laser multi-pass amplifier[J]. Proceedings of SPIE, 2015, 9342: 93420U.
    [29] SCHUHMANN K, KIRCH K, NEZ F, et al. Thin-disk laser scaling limit due to thermal lens induced misalignment instability[J]. Applied Optics, 2016, 55(32): 9022-9032. doi: 10.1364/AO.55.009022
    [30] SCHUHMANN K, KIRCH K, ANTOGNINI A. Multi-pass resonator design for energy scaling of mode-locked thin-disk lasers[J]. Proceedings of SPIE, 2017, 10082: 100820J.
    [31] SCHUHMANN K. The thin-disk laser for the 2S – 2P measurement in muonic helium[D]. Zurich: ETH Zurich, 2017.
    [32] NEGEL J P, VOSS A, AHMED M A, et al. . Thin-disk multipass amplifier for ultrashort pulses with an output power of 264 W[C]. Advanced Solid State Lasers 2013, Optica Publishing Group, 2013: AF3A. 9.
    [33] NEGEL J P, VOSS A, AHMED M A, et al. . 1.3 kW average output power Yb: YAG thin-disk multipass amplifier for multi-mJ picosecond laser pulses[C]. CLEO: Science and Innovations 2014, Optica Publishing Group, 2014: STu1O. 2.
    [34] NEGEL J P, LOESCHER A, VOSS A, et al. Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm[J]. Optics Express, 2015, 23(16): 21064-21077. doi: 10.1364/OE.23.021064
    [35] LOESCHER A, NEGEL J P, GRAF T, et al. Radially polarized emission with 635 W of average power and 2.1 mJ of pulse energy generated by an ultrafast thin-disk multipass amplifier[J]. Optics Letters, 2015, 40(24): 5758-5761. doi: 10.1364/OL.40.005758
    [36] NEGEL J P, LOESCHER A, BAUER D, et al. . Second generation thin-disk multipass amplifier delivering picosecond pulses with 2 kW of average output power[C]. Advanced Solid State Lasers 2016, Optica Publishing Group, 2016: ATu4A. 5.
    [37] NEGEL J P, LOESCHER A, DANNECKER B, et al. Thin-disk multipass amplifier for fs pulses delivering 400 W of average and 2.0 GW of peak power for linear polarization as well as 235 W and 1.2 GW for radial polarization[J]. Applied Physics B, 2017, 123(5): 156. doi: 10.1007/s00340-017-6739-2
    [38] RÖCKER C, LOESCHER A, BIENERT F, et al. Ultrafast green thin-disk laser exceeding 1.4  kW of average power[J]. Optics Letters, 2020, 45(19): 5522-5525. doi: 10.1364/OL.403781
    [39] RÖCKER C, LOESCHER A, NEGEL J P, et al. Direct amplification of sub-300fs pulses in a versatile thin-disk multipass amplifier[J]. Optics Communications, 2020, 460: 125159. doi: 10.1016/j.optcom.2019.125159
    [40] DIETZ T, JENNE M, BAUER D, et al. Ultrafast thin-disk multi-pass amplifier system providing 1.9 kW of average output power and pulse energies in the 10 mJ range at 1 ps of pulse duration for glass-cleaving applications[J]. Optics Express, 2020, 28(8): 11415-11423. doi: 10.1364/OE.383926
    [41] HERKOMMER C, KRÖTZ P, JUNG R, et al. Ultrafast thin-disk multipass amplifier with 720 mJ operating at kilohertz repetition rate for applications in atmospheric research[J]. Optics Express, 2020, 28(20): 30164-30173. doi: 10.1364/OE.404185
    [42] KEPPLER S, WANDT C, HORNUNG M, et al. Multipass amplifiers of POLARIS[J]. Proceedings of SPIE, 2013, 8780: 87800I. doi: 10.1117/12.2019248
    [43] JUNG R, TÜMMLER J, NUBBEMEYER T, et al. . Two-channel thin-disk laser for high pulse energy[C]. Advanced Solid State Lasers 2015, Optica Publishing Group, 2015: AW3A. 7.
  • 加载中
图(28) / 表(2)
计量
  • 文章访问数:  585
  • HTML全文浏览量:  325
  • PDF下载量:  309
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-05
  • 修回日期:  2023-02-05
  • 网络出版日期:  2023-04-18

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!