留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紧凑型波长自动调谐脉冲CO2激光器

潘其坤 苗昉晨 司红利 沈辉 高飞 于德洋 张阔 张冉冉 赵崇霄 陈飞 郭劲

潘其坤, 苗昉晨, 司红利, 沈辉, 高飞, 于德洋, 张阔, 张冉冉, 赵崇霄, 陈飞, 郭劲. 紧凑型波长自动调谐脉冲CO2激光器[J]. 中国光学(中英文), 2022, 15(5): 1007-1012. doi: 10.37188/CO.2022-0107
引用本文: 潘其坤, 苗昉晨, 司红利, 沈辉, 高飞, 于德洋, 张阔, 张冉冉, 赵崇霄, 陈飞, 郭劲. 紧凑型波长自动调谐脉冲CO2激光器[J]. 中国光学(中英文), 2022, 15(5): 1007-1012. doi: 10.37188/CO.2022-0107
PAN Qi-kun, MIAO Fang-chen, SI Hong-Li, SHEN Hui, GAO Fei, YU De-Yang, ZHANG Kuo, ZHANG Ran-ran, ZHAO Chong-Xiao, CHEN Fei, GUO Jin. Compact pulsed CO2 laser with wavelength automatic tuning[J]. Chinese Optics, 2022, 15(5): 1007-1012. doi: 10.37188/CO.2022-0107
Citation: PAN Qi-kun, MIAO Fang-chen, SI Hong-Li, SHEN Hui, GAO Fei, YU De-Yang, ZHANG Kuo, ZHANG Ran-ran, ZHAO Chong-Xiao, CHEN Fei, GUO Jin. Compact pulsed CO2 laser with wavelength automatic tuning[J]. Chinese Optics, 2022, 15(5): 1007-1012. doi: 10.37188/CO.2022-0107

紧凑型波长自动调谐脉冲CO2激光器

基金项目: 国家重点研发计划(No. 2018YFE0203200);吉林省与中科院科技合作项目(No. 2021SYHZ0028);激光与物质相互作用国家重点实验室基金项目(No. SKLLIM1914, SKLLIM2114);中国科学院青年创新促进会(No. 2021216)
详细信息
    作者简介:

    潘其坤(1985—),男,河南开封人,博士,副研究员,中国科学院青年创新促进会会员,2014 年于中国科学院大学获得博士学位,主要从事中长波激光器及激光等离子体极紫外光源方面的研究。E-mail:panqikun2005@163.com

  • 中图分类号: TN248.5

Compact pulsed CO2 laser with wavelength automatic tuning

Funds: Supported by National Key R&D Program of China (No. 2018YFE0203200); Science and Technology Cooperation Project between Jilin Province and Chinese Academy of Sciences (No. 2021SYHZ0028); State Key Laboratory of Laser Interaction with Matter Project (No. SKLLIM1914, SKLLIM2114); Youth Innovation Promotion Association, CAS (No. 2021216)
More Information
  • 摘要:

    面向机载激光差分吸收雷达对小型轻量化激光光源的应用需求,研制了紧凑型自动调谐脉冲CO2激光器。首先,研究了射频波导腔内光束和自由空间光学斩波光束孔径匹配关系,设计了具有实焦点的腔内光束变换系统,实验验证了斩波器通光孔径对激光脉冲波形的影响。其次,研究了CO2激光器的波长调谐特性,分析了相邻激光谱线光栅衍射角度差,并基于高精度电动转台和金属闪耀光栅,实现了CO2激光器波长自动调谐输出。最后,基于小型轻量化模块设计,完成了紧凑型自动调谐脉冲CO2激光器集成。实验结果表明,该激光器在1 kHz条件下运转稳定,脉冲宽度为350 ns,峰值功率为3.7 kW,在9.2~10.7 μm范围内测试到30条激光谱线,重量为18 kg,本文研究为机载激光差分吸收雷达提供了一种小型化探测光源。

     

  • 图 1  可调谐脉冲CO2激光器原理示意图

    Figure 1.  Schematic diagram of a tunable pulsed CO2 laser

    图 2  脉冲CO2激光平均功率随射频激励占空比变化关系

    Figure 2.  Relationship between the average power of a pulsed CO2 laser and the RF excitation duty cycle

    图 3  采用不同通光孔径斩波扇机械调Q获得的CO2激光脉冲波形:(a)0.4 mm,(b)0.8 mm,(c) 1.2 mm。(d)0.8 mm孔径1 kHz脉冲串波形

    Figure 3.  CO2 pulse waveforms obtained by mechanical Q-switching of chopper fans with different optical apertures. (a) 0.4 mm, (b) 0.8 mm, (c) 1.2 mm. (d) Pulse train at 1 kHz with slits width of 0.8 mm

    图 4  小型、轻量化高精度电动转台

    Figure 4.  Small lightweight high precision electric turntable

    图 5  机械调Q脉冲CO2激光器输出谱线

    Figure 5.  Output spectrum of mechanical Q-switched pulsed CO2 lasers

    图 6  紧凑型波长自动调谐脉冲CO2激光器实物图

    Figure 6.  Photo of compact pulsed CO2 laser with wavelength automatic tuning

  • [1] CAO ZH, WEI CH Y, CHENG X, et al. Ground fused silica processed by combined chemical etching and CO2 laser polishing with super-smooth surface and high damage resistance[J]. Optics Letters, 2020, 45(21): 6014-6017. doi: 10.1364/OL.409857
    [2] 高月娟, 陈飞, 潘其坤, 等. 用于超短脉冲CO2激光的半导体光开关理论建模与数值分析[J]. 中国光学,2020,13(3):577-585.

    GAO Y J, CHEN F, PAN Q K, et al. Modeling and numerical simulation of a semiconductor switching device applied in an ultra-short pulse CO2 laser[J]. Chinese Optics, 2020, 13(3): 577-585. (in Chinese)
    [3] 袁志国, 马修真, 刘晓楠, 等. 利用可调谐激光吸收光谱技术的柴油机排放温度测试研究[J]. 中国光学,2020,13(2):281-289. doi: 10.3788/co.20201302.0281

    YUAN ZH G, MA X ZH, LIU X N, et al. Testing on diesel engine emission temperature using tunable laser absorption spectroscopy technology[J]. Chinese Optics, 2020, 13(2): 281-289. (in Chinese) doi: 10.3788/co.20201302.0281
    [4] FAN S Y, HEALY N. CO2 laser-based side-polishing of silica optical fibers[J]. Optics Letters, 2020, 45(15): 4128-4131. doi: 10.1364/OL.397939
    [5] HE T, WEI CH Y, JIANG ZH G, et al. Numerical model and experimental demonstration of high precision ablation of pulse CO2 laser[J]. Chinese Optics Letters, 2018, 16(4): 041401. doi: 10.3788/COL201816.041401
    [6] POLYANSKIY M N, POGORELSKY I V, BABZIEN M, et al. Demonstration of a 2 ps, 5 TW peak power, long-wave infrared laser based on chirped-pulse amplification with mixed-isotope CO2 amplifiers[J]. OSA Continuum, 2020, 3(3): 459-472. doi: 10.1364/OSAC.381467
    [7] 曾庆栋, 袁梦甜, 朱志恒, 等. 便携式激光诱导击穿光谱最新研究进展[J]. 中国光学,2021,14(3):470-486. doi: 10.37188/CO.2020-0093

    ZENG Q D, YUAN M T, ZHU ZH H, et al. Research progress on portable laser-induced breakdown spectroscopy[J]. Chinese Optics, 2021, 14(3): 470-486. (in Chinese) doi: 10.37188/CO.2020-0093
    [8] RUAN P, PAN Q K, XIE J J, et al. Rapidly tunable pulsed CO2 laser based on acoustic-optic modulator[J]. Infrared Physics &Technology, 2018, 92: 299-303.
    [9] TEHRANI M K, MOHAMMAD M M, JAAFARI E, et al. Setting up a mobile Lidar (DIAL) system for detecting chemical warfare agents[J]. Laser Physics, 2015, 25(3): 035701. doi: 10.1088/1054-660X/25/3/035701
    [10] PAL A, CLARK C D, SIGMAN M, et al. Differential absorption lidar CO2 laser system for remote sensing of TATP related gases[J]. Applied Optics, 2009, 48(4): B145-B150. doi: 10.1364/AO.48.00B145
    [11] KARAPUZIKOV A I, PTASHNIK I V, SHERSTOV I V, et al. Modeling of helicopter-borne tunable TEA CO2 DIAL system employment for detection of methane and ammonia leakages[J]. Infrared Physics &Technology, 2000, 41(2): 87-96.
    [12] SZINICZ L. History of chemical and biological warfare agents[J]. Toxicology, 2005, 214(3): 167-181. doi: 10.1016/j.tox.2005.06.011
    [13] BANDINI F, SUNDING T P, LINDE J, et al. Unmanned Aerial System (UAS) observations of water surface elevation in a small stream: comparison of radar altimetry, LIDAR and photogrammetry techniques[J]. Remote Sensing of Environment, 2020, 237: 111487. doi: 10.1016/j.rse.2019.111487
    [14] PODOSKI J H, SMITH T D, FINNEGAN D C, et al. Unmanned aerial system lidar survey of two breakwaters in the Hawaiian islands[J]. Coastal Engineering Proceedings, 2018, 1(36): 23. doi: 10.9753/icce.v36.structures.23
    [15] XIE J J, PAN Q K, GUO R H, et al. Dynamical analysis of acousto-optically Q-switched CO2 laser[J]. Optics and Lasers in Engineering, 2012, 50(2): 159-164. doi: 10.1016/j.optlaseng.2011.09.014
    [16] ZHANG Y CH, TIAN ZH SH, SUN ZH H, et al. Study of frequency stabilization for electro-optical Q-switched radio-frequency-excited waveguide CO2 laser using build-up time method[J]. Applied Optics, 2013, 52(16): 3732-3736. doi: 10.1364/AO.52.003732
    [17] 潘其坤, 陈飞, 石宁宁, 等. 声光调Q CO2激光器波长调谐理论分析与实验研究[J]. 红外与激光工程,2017,46(7):0705002. doi: 10.3788/IRLA201746.0705002

    PAN Q K, CHEN F, SHI N N, et al. Theoretical analysis and experimental research on tunable acousto-optic Q-switched CO2 laser[J]. Infrared and Laser Engineering, 2017, 46(7): 0705002. (in Chinese) doi: 10.3788/IRLA201746.0705002
  • 加载中
图(6)
计量
  • 文章访问数:  844
  • HTML全文浏览量:  268
  • PDF下载量:  215
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-28
  • 修回日期:  2022-06-27
  • 网络出版日期:  2022-07-12

目录

    /

    返回文章
    返回