留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航天高分辨率对地光学遥感载荷研究进展

苏云 葛婧菁 王业超 王乐然 王钰 郑子熙 邵晓鹏

苏云, 葛婧菁, 王业超, 王乐然, 王钰, 郑子熙, 邵晓鹏. 航天高分辨率对地光学遥感载荷研究进展[J]. 中国光学(中英文), 2023, 16(2): 258-282. doi: 10.37188/CO.2022-0085
引用本文: 苏云, 葛婧菁, 王业超, 王乐然, 王钰, 郑子熙, 邵晓鹏. 航天高分辨率对地光学遥感载荷研究进展[J]. 中国光学(中英文), 2023, 16(2): 258-282. doi: 10.37188/CO.2022-0085
SU Yun, GE Jing-jing, WANG Ye-chao, WANG Le-ran, WANG Yu, ZHENG Zi-xi, SHAO Xiao-peng. Research progress on high-resolution imaging system for optical remote sensing in aerospace[J]. Chinese Optics, 2023, 16(2): 258-282. doi: 10.37188/CO.2022-0085
Citation: SU Yun, GE Jing-jing, WANG Ye-chao, WANG Le-ran, WANG Yu, ZHENG Zi-xi, SHAO Xiao-peng. Research progress on high-resolution imaging system for optical remote sensing in aerospace[J]. Chinese Optics, 2023, 16(2): 258-282. doi: 10.37188/CO.2022-0085

航天高分辨率对地光学遥感载荷研究进展

doi: 10.37188/CO.2022-0085
基金项目: 国家自然基金项目(No. 6217031112,No. 61976169,No. 11774164)
详细信息
    作者简介:

    苏 云(1982—),男,湖北当阳人,博士,研究员,2005年6月于北京理工大学获得学士学位,2008 年 6 月于中国空间技术研究院获得硕士学位,2018 年9月起在西安电子科技大学攻读博士学位,自2008年6月于北京空间机电研究所工作,主要从事先进光学系统设计、计算光学基础理论与方法研究。E-mail:suedul@163.com

    葛婧菁(1984—),女,黑龙江绥芬河人,博士,高级工程师,2011年6月于南开大学获得博士学位,2011年8月至今于北京空间机电研究院工作,主要从事光学遥感、计算光学等方面的研究。E-mail:m18210968826@163.com

    王业超(1993—),男,甘肃临夏人,硕士,工程师,2020年6月获得中国空间技术研究院硕士学位,主要从事计算成像模型及重建算法等方面的研究。E-mail: cast_wangyc_508@163.com

    王乐然(1996—),女,黑龙江齐齐哈尔人,硕士,助理工程师,2021年6月获得天津大学硕士学位,主要从事光学设计、图像处理等方面的研究。E-mail:wangler7@163.com

    王 钰(1994—),男,内蒙古通辽人,博士,工程师,2021年6月获得中国空间技术研究院博士学位,主要从事新体制光学成像、光学遥感图像处理与应用等方面的研究。E-mail:93031@163.com

    郑子熙(1997—),女,河北承德人,硕士,助理工程师,2020年12月获得爱丁堡大学硕士学位,主要从事计算光学、光电学等方面的研究。E-mail:807492091@qq.com

  • 中图分类号: V474.2

Research progress on high-resolution imaging system for optical remote sensing in aerospace

Funds: Supported by the National Natural Science Foundation of China (No. 6217031112, No. 61976169, No. 11774164)
More Information
  • 摘要:

    随着光学成像技术的不断发展和遥感应用需求的日益增长,跨尺度高分辨率光学技术在遥感领域得到广泛应用。为了获得更多的目标细节信息,国内外研究学者在不同技术方向开展了相关研究。本文对遥感成像技术进行了总结分类,介绍了具有代表性的航天高分辨率对地光学遥感载荷技术,重点关注单体结构主镜、可展开分块拼接主镜、光学干涉主镜、光栅衍射主镜、虚拟合成孔径、光子型综合孔径成像、计算超分辨成像、编队合成孔径等成像模式,为高分辨率对地光学遥感载荷发展提供新的发展思路。

     

  • 图 1  1 m以内高分辨率光学遥感卫星

    Figure 1.  High-resolution optical remote sensing satellites with 1 m resolution

    图 2  高分辨率光学遥感卫星技术发展情况

    Figure 2.  Technical changes of high resolution optical remote sensing satellite

    图 3  地球静止轨道空间监视系统

    Figure 3.  GEO-oculus surveillance system

    图 4  高分四号遥感卫星[39]

    Figure 4.  GF-4 remote sensing satellite[39]

    图 5  4 m碳化硅非球面反射镜[41]

    Figure 5.  4 m SiC aspherical mirror[41]

    图 6  MOIRE概念图[48]

    Figure 6.  MOIRE concept map[48]

    图 7  MOIRE项目制备得到的具有衍图案的光学元器件[49]

    Figure 7.  Optical components with diffraction pattern prepared by MOIRE project[49]

    图 8  MOIRE系统已研制的1/8地面样机[50]

    Figure 8.  1/8 ground prototype developed by MOIRE system[50]

    图 9  MOIRE项目研制的空间环境试验样机[51]

    Figure 9.  Space environment test prototype developed by MOIRE project[51]

    图 10  GISMO卫星编队原理示意图[55]

    Figure 10.  Schematic diagram of GISMO satellite formation principle[55]

    图 11  ESA-EUSO概念示意图

    Figure 11.  ESA-EUSO concept diagram

    图 12  JEM-EUSO望远镜结构示意图[56]

    Figure 12.  Structural diagram of JEM-EUSO telescope[56]

    图 13  “猎鹰卫星-7”微卫星搭载的“光子筛”成像系统示意图[63]

    Figure 13.  Schematic diagram of “photon screen” imaging system carried by “falcon-7” microsatellite[63]

    图 14  衍射成像空间望远镜[64]

    Figure 14.  Diffraction imaging space telescope[64]

    图 15  5 m口径衍射望远镜主镜[69]

    Figure 15.  Primary mirror of 5 m aperture diffraction telescope[69]

    图 16  NRO 研发的 SMT 望远镜(左)和 SMT 望远镜光路设计(右)[79]

    Figure 16.  Optical path design of SMT telescope (right) and SMT telescope (left) developed by NRO[79]

    图 17  “詹姆斯·韦伯空间望远镜”主镜的在轨展开过程[80]

    Figure 17.  On orbit deployment of the primary mirror of the James Webb Space Telescope[80]

    图 18  詹姆斯·韦伯可展开分块望远镜

    Figure 18.  James Webb unfold block telescope

    图 19  地球静止轨道2 m分辨率光学相机

    Figure 19.  Optical camera in GEO with 2 m resolution

    图 20  LUVOIR-A/LUVOIR-B模拟图

    Figure 20.  LUVOIR-A/LUVOIR-B models

    图 21  在轨组装典型范例

    Figure 21.  Typical on-orbit assembly projects

    图 22  斐索-干涉合成孔径成像系统阵列

    Figure 22.  Configuration of Fizeau interferometric synthetic aperture imaging system

    图 23  Star-9系统[99]

    Figure 23.  Star-9 system[99]

    图 24  美国TPF-I空间干涉仪示意图

    Figure 24.  Space interferometer TPF-I from the U.S.

    图 25  TPF-I集光望远镜示意图

    Figure 25.  Schematic diagram of collecting telescope TPF-I

    图 26  TPF-I光束合成望远镜示意图

    Figure 26.  Schematic diagram of beam synthesis telescope TPF-I

    图 27  GOLAY-3自适应光学卫星系统[106]

    Figure 27.  GOLAY-3 adaptive reconnaissance optical satellite system[106]

    图 28  MIDAS系统示意图[110]

    Figure 28.  Schematic diagram of MIDAS system[110]

    图 29  MIDAS光学系统图[110]

    Figure 29.  MIDAS optical system[110]

    图 30  ONERA稀疏孔径系统布局图

    Figure 30.  Layout of ONERA sparse aperture system

    图 31  ONERA稀疏孔径系统共相位试验原理图

    Figure 31.  Principle diagram of ONERA sparse aperture system co-phasing test

    图 32  ONERA稀疏孔径系统图像恢复仿真结果[111]

    Figure 32.  Simulation results of recovery images of ONERA sparse aperture system[111]

    图 33  达尔文任务的一种配置[113]

    Figure 33.  Configuration of Darwin’s Mission[113]

    图 34  FFSAT的概念图

    Figure 34.  Concept map of FFSAT

    图 35  三轴压电平台

    Figure 35.  3-axis piezo stage

    图 36  (a)原目标;(b)SPIDER技术获取的图像[121]

    Figure 36.  (a) Original object; (b) image obtained by SPIDER technology[121]

    图 37  SPIDER系统示意图

    Figure 37.  Schematic diagram of SPIDER system

    图 38  洛克希德-马丁公司的“SPIDER”成像仪

    Figure 38.  SPIDER developed by Lockheed Martin company

    图 39  SPOT-5亚像元超分辨率成像方式的(Supermode模式)成像效果

    Figure 39.  Imaging effect of SPOT-5 subpixel super resolution imaging (Supermode mode)

    图 40  SkySat卫星轨道分布图

    Figure 40.  SkySat satellite orbit distribution

    图 41  SkySat-1探测器光谱成像示意图

    Figure 41.  Schematic diagram of spectrum imaging for SkySat-1 detector

    图 42  卫星采集RAW图像(左)VS 组合20帧后的超分辨图像(右)[123]

    Figure 42.  RAW image acquired by satellite (left) VS super resolution image after 20 frames combination (right)[123]

    图 43  原始低分辨率图像

    Figure 43.  Raw low-resolution image

    图 44  超分辨后结果

    Figure 44.  Super resolution results

    图 45  原始低分辨率数据[130]

    Figure 45.  Raw low-resolution data[130]

    图 46  超分辨后结果图[133]

    Figure 46.  Super resolution imaging result[133]

    图 47  相干孔径合成超分辨原理图[133]

    Figure 47.  Schematic diagram of coherent aperture synthesis super resolution imaging[133]

    图 48  相干孔径合成超分实验测试场景

    Figure 48.  Experimental test scenario of coherent aperture synthesis supermetry

    表  1  高分辨率光学遥感卫星光学参数

    Table  1.   Optical parameters of high-resolution optical remote sensing satellites

    序号名称国家年份分辨率/m轨道/km
    1QuickBird-2美国20010.61450
    2IGS-1A日本20031500
    3OrbView-3美国20031470
    4Resurs-DK1俄罗斯20061360~610
    5EROS B以色列20060.7500
    6Ofeq-7以色列20070.5300~600
    7GeoEye-1美国20080.41681
    8KH-13美国20080.07
    9CartoSat-2印度20100.8635
    10Pleiades-4法国20110.5694
    11Worldview-3美国20140.3617
    12Gaojing-1中国20160.5530
    13Worldview-4美国20160.25617
    14BlackSky-4美国20180.85450
    15Hongqi1-H9中国20200.75481.6
    16GFDM中国20200.5643.8
    17IGS-Optical 7日本20200.3485
    18SkySat-16美国20200.5456
    19JL-GF-02D中国20210.75650
    20WorldView –Legion美国预计20220.3
    下载: 导出CSV

    表  2  JEM-EUSO指标参数

    Table  2.   Index parameters of JEM-EUSO

    探测谱段/nm330~400
    口径/m2.5
    视场角/(°)±30
    可观测区域/km2>1.9×105
    焦面面积/m24.5
    像元数2.0×105
    像元尺寸/mm4.5
    角分辨率/(°)0.1
    时间分辨率/μs≤2.5
    下载: 导出CSV

    表  3  成像观测航天器口径参数

    Table  3.   Comparison of large aperture imaging observation spacecraft

    参数口径/m主镜面密度/(kg·m−2)运行温度/K
    JWST6.5分块2050
    HST2.4单体180300
    “赫歇尔空间望远镜”3.5单体21.890
    KH-11 侦察卫星2.4单体不详常温
    KH-12侦察卫星约3.3单体不详常温
    下载: 导出CSV

    表  4  JWST 航天器基本情况

    Table  4.   Basic parameters of JWST

    参数基本情况
    质量总质量约6500 kg,主镜质量约705 kg
    功率/W2000
    最大数据速率/(Mbit·s−1)28
    主镜直径6.5 m,由 18 块镀金六边形铍镜组成,
    每个镜块的直径为1.32 m,焦距为131.4 m
    遮阳板5层可展开遮阳板,展开约21.2 m×14.2 m
    观测波长可见光、近红外、中红外(0.6~28.5 μm)
    光学分辨率大约0.1
    仪器近红外相机、近红外光谱仪、中红外仪器、带
    有精巧导航系统的近红外成像仪与无缝光谱仪
    轨道日地拉格朗日L2点晕轨道
    工作温度/°C−235
    任务寿命5年,目标10年以上
    下载: 导出CSV

    表  5  不同类型遥感成像技术总结

    Table  5.   Summary of different types of remote sensing imaging technology

    序号技术名称优点缺点
    1大口径单体光学遥感成像技术技术成熟度高、
    成像分辨率高
    口径受限、系统精密、加工、装调
    难度大
    2单体衍射元件成像系统系统衍射效率高成像质量低、衍射元件复杂
    3空间展开式分块镜拼接主镜技术易满足发射要求、可实现分辨率高设计难度大、镜面调整难度大
    4光学综合孔径成像系统可实现大口径成像、
    系统结构分布
    式灵活布置
    子孔径共相位调整难度大
    5分块式平板光电成像探测系统系统集成度高、可实现轻小型化成像分辨率较低、加工工艺复杂
    6器件亚像素
    拼接技术
    可实现超分辨率成像、可行性高分辨率提升有限
    7多帧超分辨率成像技术可实现超分辨率成像、技术成熟分辨率提升有限、时间分辨率低
    8计算超分主动探测可实现超分辨率
    成像、系统可灵活
    分布式构型
    远距离对主动光源功率要求过高、易受噪声影响
    下载: 导出CSV
  • [1] 何国金, 李克鲁, 胡德永, 等. 多卫星遥感数据的信息融合: 理论、方法与实践[J]. 中国图象图形学报,1999,4(9):744-750.

    HE G J, LI K L, HU D Y, et al. Information fusion of multisensor satellite remote sensing data: theory, methodology and experiment[J]. Journal of Image and Graphics, 1999, 4(9): 744-750. (in Chinese)
    [2] HUANG J P, YU H P, GUAN X D, et al. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 2016, 6(2): 166-171. doi: 10.1038/nclimate2837
    [3] FAN Y D, WEN Q, CHEN SH R. Engineering survey of the environment and disaster monitoring and forecasting small satellite constellation[J]. International Journal of Digital Earth, 2012, 5(3): 217-227. doi: 10.1080/17538947.2011.648540
    [4] ZHANG P, HU X P, LU Q F, et al. FY-3E: the first operational meteorological satellite mission in an early morning orbit[J]. Advances in Atmospheric Sciences, 2022, 39(1): 1-8. doi: 10.1007/s00376-021-1304-7
    [5] MARTIN S. An Introduction to Ocean Remote Sensing[J]. Oceanography, 2005, 18(3): 86-89. doi: 10.5670/oceanog.2005.36
    [6] 裴照宇, 侯军, 王琼. 光学技术在中国月球和深空探测中的应用(特约)[J]. 红外与激光工程,2020,49(5):20201002. doi: 10.3788/irla.2_invited-peizhaoyu

    PEI ZH Y, HOU J, WANG Q. Applications of optical technology in lunar and deep space exploration in China (Invited)[J]. Infrared and Laser Engineering, 2020, 49(5): 20201002. (in Chinese) doi: 10.3788/irla.2_invited-peizhaoyu
    [7] 曲宏松, 金光, 张叶. “Next View计划”与光学遥感卫星的发展趋势[J]. 中国光学与应用光学,2009,2(6):467-476.

    QU H S, JIN G, ZHANG Y. NextView program and progress in optical remote sensing satellites[J]. Chinese Journal of Optics and Applied Optics, 2009, 2(6): 467-476. (in Chinese)
    [8] BRANDTBERG T, WARNER T. High-spatial-resolution remote sensing[M]//SHAO G F, REYNOLDS K M. Computer Applications in Sustainable Forest Management. Netherlands: Springer, 2006: 19-41.
    [9] BENEDIKTSSON J A, CHANUSSOT J, MOON W M. Very high-resolution remote sensing: challenges and opportunities [Point of View][J]. Proceedings of the IEEE, 2012, 100(6): 1907-1910. doi: 10.1109/JPROC.2012.2190811
    [10] AKUMU C E, AMADI E O, DENNIS S. Application of drone and WorldView-4 satellite data in mapping and monitoring grazing land cover and pasture quality: pre- and post-flooding[J]. Land, 2021, 10(3): 321. doi: 10.3390/land10030321
    [11] TU T M, HUANG P S, HUNG C L, et al. A fast intensity–hue–saturation fusion technique with spectral adjustment for IKONOS imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 309-312. doi: 10.1109/LGRS.2004.834804
    [12] AGUILAR M A, DEL MAR SALDAÑA M, AGUILAR F J, et al. Assessing geometric accuracy of the orthorectification process from GeoEye-1 and WorldView-2 panchromatic images[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 21: 427-435. doi: 10.1016/j.jag.2012.06.004
    [13] ASADZADEH S, DE SOUZA FILHO C R. Investigating the capability of WorldView-3 superspectral data for direct hydrocarbon detection[J]. Remote Sensing of Environment, 2016, 173: 162-173. doi: 10.1016/j.rse.2015.11.030
    [14] NGUYEN T T H, PHAM T A, LUONG T P. Estimate tropical forest stand volume using SPOT 5 satellite image[J]. IOP Conference Series:Earth and Environmental Science, 2021, 652(1): 012016. doi: 10.1088/1755-1315/652/1/012016
    [15] 曹福成. 高分系列遥感卫星布设中国太空“慧眼”——我国高分专项建设回眸[J]. 中国军转民,2015(1):28-33. doi: 10.3969/j.issn.1008-5874.2015.01.006

    CAO F CH. The high-score series of remote sensing satellites is deployed in China’s Space “Wise Eye” - a review of China's high-score special construction[J]. Defense Industry Conversion in China, 2015(1): 28-33. (in Chinese) doi: 10.3969/j.issn.1008-5874.2015.01.006
    [16] 曾文, 林辉, 李新宇, 等. 基于高景一号遥感影像的林地信息提取[J]. 中南林业科技大学学报,2020,40(7):32-40. doi: 10.14067/j.cnki.1673-923x.2020.07.005

    ZENG W, LIN H, LI X Y, et al. Study on extracting forest information based on SV-1 image[J]. Journal of Central South University of Forestry &Technology, 2020, 40(7): 32-40. (in Chinese) doi: 10.14067/j.cnki.1673-923x.2020.07.005
    [17] 张召才. 吉林一号卫星组星[J]. 卫星应用,2015(11):1.

    ZHANG ZH C. Jilin No. 1 satellite group[J]. Satellite Application, 2015(11): 1. (in Chinese)
    [18] CASOLINO M, PICOZZA P. Launch and commissioning of the PAMELA experiment on board the resurs-DK1 satellite[J]. Advances in Space Research, 2008, 41(12): 2064-2070. doi: 10.1016/j.asr.2007.06.062
    [19] KRISHNA B G, SRINIVASAN T P, SRIVASTAVA P K. An integrated approach for topographical mapping from space using Cartosat-1 and Cartosat-2 imagery[C]//ISPRS Congress 2008. 2008.
    [20] TU T M, HSU C L, TU P Y, et al. An adjustable pan-sharpening approach for IKONOS/QuickBird/GeoEye-1/WorldView-2 imagery[J]. IEEE Journal Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(1): 125-134. doi: 10.1109/JSTARS.2011.2181827
    [21] MURTHY K, SHEARN M, SMILEY B D, et al. SkySat-1: Very high-resolution imagery from a small satellite[J]. Proceedings of SPIE, 2014, 9241: 92411e.
    [22] LEVIN N, JOHANSEN K, HACKER J M, et al. A New source for high spatial resolution night time images —— the EROS-B Commercial Satellite[J]. Remote Sensing of Environment, 2014, 149: 1-12. doi: 10.1016/j.rse.2014.03.019
    [23] BEN-DAVID A. Ofeq-7 bolsters Israel's intelligence coverage[J]. Jane's Defence Weekly, 2007, 44(25): 17.
    [24] LIU J F, WANG H J, SUN D W, et al. On-orbit adjustment and compensation for large aperture optical system[J]. Acta Optica Sinica,34(3):, 0322, 005: 2014.
    [25] PANG ZH H, FAN X W, CHEN Q F, et al. Influence of surface-profile error of larger mirror on aberrations characteristics of optical system[J]. Acta Optica Sinica, 2013, 33(4): 0422002. doi: 10.3788/AOS201333.0422002
    [26] LIU SH T, HU R, LI Q H, et al. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope[J]. Applied Optics, 2014, 53(35): 8318-8325. doi: 10.1364/AO.53.008318
    [27] HU R, LIU SH T, LI Q H. Topology-optimization-based design method of flexures for mounting the primary mirror of a large-aperture space telescope[J]. Applied Optics, 2017, 56(15): 4551-4560. doi: 10.1364/AO.56.004551
    [28] YI K, MA P, QIU H, et al. Progress on large aperture transport mirrors[J]. Optics and Precision Engineering, 2016, 24(12): 2902-2907. doi: 10.3788/OPE.20162412.2902
    [29] 常君磊, 李庆林, 李富强, 等. 航天光学遥感探测器滤光片环境考核方法[J]. 航天器环境工程,2018,35(1):87-91. doi: 10.3969/j.issn.1673-1379.2018.01.016

    CHANG J L, LI Q L, LI F Q, et al. Environmental adaptability assessment of the filter of space optical remote sensor detector[J]. Spacecraft Environment Engineering, 2018, 35(1): 87-91. (in Chinese) doi: 10.3969/j.issn.1673-1379.2018.01.016
    [30] ZHENG D H, CHEN L, ZHU W H. Research on adjusting and testing of off-axis paraboloid mirror with large aperture[J]. Proceedings of SPIE, 2016, 9684: 968406.
    [31] MATHEW L M, DEEPAK B P, SABU B. Design and analysis of a metallic Ogive payload fairing for a new generation launch vehicle[J]. IOSR Journal of Mechanical and Civil Engineering, 2016, 13(5): 99-103.
    [32] GUO J, GONG D P, ZHU L, et al. Calculation of overlapping pixels in interleaving assembly of CCD focal plane of mapping camera[J]. Optics and Precision Engineering, 2013, 21(5): 1251-1257. doi: 10.3788/OPE.20132105.1251
    [33] ZHANG Y L, LU B, ZHANG W T, et al. A new method for detecting moving objects in video[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(1): 46-52.
    [34] LIN H B, BO Y CH, WANG J D, et al. Research progress in super-resolution mapping from remotely sensed imagery[J]. Journal of Image and Graphics, 2011, 16(4): 495-502.
    [35] SICA L. Effects of nonredundance on a synthetic-aperture imaging system[J]. Journal of the Optical Society of America A, 1993, 10(4): 567-572. doi: 10.1364/JOSAA.10.000567
    [36] MACKENZIE C, SWEETMAN B. Snakes and lasers[J]. Aviation Week & Space Technology, 2012.
    [37] MATTHEW F, MATTHEW R, DOUGLAS E, et al. The future of Earth observation in hydrology[J]. Hydrology and Earth System Sciences, 2017, 21(7): 3879-3914.
    [38] 吴同舟, 王浩, 周峰, 等. 基于月球观测的“高分四号”卫星相机在轨MTF测试[J]. 航天返回与遥感,2019,40(1):41-49. doi: 10.3969/j.issn.1009-8518.2019.01.005

    WU T ZH, WANG H, ZHOU F, et al. The Lunar trail of GF-4 satellite and on-orbit knife-edge measurements of MTF[J]. Spacecraft Recovery &Remote Sensing, 2019, 40(1): 41-49. (in Chinese) doi: 10.3969/j.issn.1009-8518.2019.01.005
    [39] 童旭东. 中国高分辨率对地观测系统重大专项建设进展[J]. 遥感学报,2016,5:775-780.

    TONG X D. Progress in the construction of chinese major special project on high-resolution earth observation system[J]. Journal of Remote Sensing, 2016, 5: 775-780. (in Chinese)
    [40] 郭疆. 碳化硅大口径空间反射镜设计与制造研究[D]. 长春: 吉林大学, 2019.

    GUO J. Research on design and manufacturing of large aperture space mirror of silicon carbide[D]. Changchun: Jilin University, 2019.
    [41] 邵梦旗. 空间相机光机结构集成优化设计方法研究[D]. 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021. DOI: 10.27522/d.cnki.gkcgs.2021.000079.

    SHAO M Q, Space camera optical structure integration optimization design method research[D]. University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics Physics, Chinese Academy of Sciences), 2021. DOI: 10.27522/d.cnki.gkcgs.2021.000079.
    [42] 汪逸群, 王龙, 郭万存, 等. 空间多用途双面反射镜的设计与制备[J]. 光学学报,2015,35(4):0428001. doi: 10.3788/AOS201535.0428001

    WANG Y Q, WANG L, GUO W C, et al. Design and manufacture of space all-purpose double-faced reflective mirror[J]. Acta Optica Sinica, 2015, 35(4): 0428001. (in Chinese) doi: 10.3788/AOS201535.0428001
    [43] JAHNS J J. TURUNEN, F. W (eds. ), Diffractive Optics for Industrial and Commercial Applications[M], Berlin: Akademie Verlag, , Germany, 1997: 426
    [44] MADSEN C K. Linking diffractive and geometrical optics surface scattering at a fundamental level[J]. Optics and Photonics Journal, 2022, 12(1): 1-17. doi: 10.4236/opj.2022.121001
    [45] DUFRESNE E R, GRIER D G. Optical tweezer arrays and optical substrates created with diffractive optics[J]. Review of Scientific Instruments, 1998, 69(5): 1974-1977. doi: 10.1063/1.1148883
    [46] ATCHESON P D, STEWART C, DOMBER J, et al. MOIRE: Initial demonstration of a transmissive diffractive membrane optic for large lightweight optical telescopes[J]. Proceedings of SPIE, 2012, 8442: 844221. doi: 10.1117/12.925413
    [47] ATCHESON P, DOMBER J, WHITEAKER K, et al. MOIRE: Ground demonstration of a large aperture diffractive transmissive telescope[J]. Proceedings of SPIE, 2014, 9143: 91431W.
    [48] 赵新龙, 成志铎, 刘君. 复杂战场环境导弹发射装置隐身防护技术研究[J]. 现代防御技术,2016(1):146-150,160.

    ZHAO X L, CHENG Z D, LIU J. Research on stealth protection technology for missile launchers in complex battlefield environments[J]. Modern Defence Technology, 2016(1): 146-150,160. (in Chinese)
    [49] ATCHESON PAUL D. MOIRE: initial demonstration of a transmissive diffractive membrane optic for large lightweight optical telescopes[J]. 2012, 8442 : 844221-844221-14.
    [50] DOMBER J L, PAUL D A, JEFF K. MOIRE: ground test bed results for a large membrane telescope[C]. Spacecraft Structures Conference. 2014.
    [51] 王若秋.基于衍射成像系统的薄膜元件关键技术研究[D]. 中国科学院长春光学精密机械与物理研究所, 2017.

    WANG R Q. Key Technology research on thin film components based on diffraction imaging system[D]. University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics Physics, Chinese Academy of Sciences), 2017.
    [52] DOMBER J L, ATCHESON P D, KOMMERS J. MOIRE: Ground test bed results for a large membrane telescope[C]//Spacecraft Structures Conference. 2014.
    [53] TANDY W D, COPP T, CAMPBELL L, et al.. MOIRE gossamer space telescope-membrane analysis[C]//Spacecraft Structures Conference. 2014.
    [54] STAGUHN J G, BENFORD D J, ALLEN C A, et al. Instrument performance of GISMO, a 2 millimeter tes bolometer camera used at the IRAM 30 m telescope[J]. Proceedings of SPIE, 2008, 7020: 702004. doi: 10.1117/12.789764
    [55] 郑耀辉. 空间薄膜衍射望远镜主镜展开技术研究[D]. 中国科学院大学(中国科学院西安光学精密机械研究所), 2016.

    ZHENG Y H. Space thin-film diffraction telescope primary mirror unfolding technique study[D]. Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2016.
    [56] CATALANO O. Extreme Universe Space Observatory-EUSO: An innovative project for the detection of extreme energy cosmic rays and neutrinos[J]. Il Nuovo Cimento C, 2001, 24(3): 445-469.
    [57] SANTANGELO A, PETROLINI A. Observing ultra-high-energy cosmic particles from space: s-EUSO, super-extreme universe space observatory mission[J]. New Journal of Physics, 2009, 11(6): 065010. doi: 10.1088/1367-2630/11/6/065010
    [58] PETROLINI A. The extreme universe space observatory (EUSO) instrument[J]. Nuclear Physics B - Proceedings Supplements, 2002, 113(1-3): 329-336. doi: 10.1016/S0920-5632(02)01860-1
    [59] TAKIZAWA Y, EBISUZAKI T, KAWASAKI Y, et al. JEM-EUSO: Extreme universe space observatory on JEM/ISS[J]. Nuclear Physics B-Proceedings Supplements, 2007, 166: 72-76. doi: 10.1016/j.nuclphysbps.2006.12.007
    [60] ANDERSEN G, ASMOLOV O, DEARBORN M E, et al. FalconSAT-7: a membrane photon sieve CubeSat solar telescope[J]. Proceedings of SPIE, 2012, 8442: 84421C.
    [61] ANDERSEN G P, ASMOLOVA O. FalconSAT-7: a membrane space telescope[J]. Proceedings of SPIE, 2014, 9143: 91431X.
    [62] ANDERSEN G, ASMOLOVA O, MCHARG M G, et al. FalconSAT-7: a membrane space solar telescope[J]. Proceedings of SPIE, 2016, 9904: 99041P.
    [63] DEARBORN M, ANDERSEN G, MCHARG M G, et al.. FALCONSAT-7: A Deploy Able Solar Telescope Mission[C]//28th Annual AIAA/USU Conference of Small Satellites, 2012.
    [64] 郭明. 卫星大尺度展开机构地面测控系统的设计与实现[D]. 哈尔滨工业大学, 2017.

    GUO M. Design and implementation of a ground-based measurement and control system for large scale satellite deployment mechanism[D]. Harbin Institute of Technology, 2017.
    [65] HYDE R A. Eyeglass. 1. Very large aperture diffractive telescopes[J]. Applied Optics, 1999, 38(19): 4198-4212. doi: 10.1364/AO.38.004198
    [66] HYDE R A, DIXIT S N, WEISBERG A H, et al. Eyeglass: a very large aperture diffractive space telescope[J]. Proceedings of SPIE, 2002, 4849: 28-39. doi: 10.1117/12.460420
    [67] HYDE R A, DIXIT S N, WEISBERG A H, et al. . Large aperture diffractive space telescope[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2001.
    [68] HYDE R. Eyeglass large aperture, lightweight space optics FY2000 - FY2002 LDRD strategic initiative[R]. Livermore: Lawrence Livermore National Lab. , 2003.
    [69] 王昊, 康福增, 赵卫, 谢永军. 一种红外衍射望远镜的光学设计[J]. 红外与毫米波学报,2016,35(4):425-429.

    WANG H, KANG F Z, ZHAO W, XIE Y J. Optical design of an infrared diffraction telescope[J]. Journal of Infrared and Millimeter Waves, 2016, 35(4): 425-429. (in Chinese)
    [70] 陈晓丽, 傅丹鹰. 大口径甚高分辨率空间光学遥感器技术途径探讨[J]. 航天返回与遥感,2003,24(4):19-24. doi: 10.3969/j.issn.1009-8518.2003.04.005

    CHEN X L, FU D Y. Solutions for space optical remote sensor with large aperture and ultrahigh resolution[J]. Spacecraft Recovery &Remote Sensing, 2003, 24(4): 19-24. (in Chinese) doi: 10.3969/j.issn.1009-8518.2003.04.005
    [71] WANG R Q, ZHANG ZH Y, GUO CH L, et al. Effects of fabrication errors on diffraction efficiency for a diffractive membrane[J]. Chinese Optics Letters, 2016, 14(12): 120501. doi: 10.3788/COL201614.120501
    [72] XUE CH X, CUI Q F. Design of multilayer diffractive optical elements with polychromatic integral diffraction efficiency[J] Optics Letters, 2010, 35(7): 986-988.
    [73] 刘民哲, 刘华, 许文斌, 等. 用于空间望远镜的膜光子筛[J]. 光学 精密工程,2014,22(8):2127-2134. doi: 10.3788/OPE.20142208.2127

    LIU M ZH, LIU H, XU W B, et al. Membrane photon sieve for space telescope[J]. Optics and Precision Engineering, 2014, 22(8): 2127-2134. (in Chinese) doi: 10.3788/OPE.20142208.2127
    [74] 张健, 栗孟娟, 阴刚华, 等. 用于太空望远镜的大口径薄膜菲涅尔衍射元件[J]. 光学 精密工程,2016,24(6):1289-1296. doi: 10.3788/OPE.20162406.1289

    ZHANG J, SU M Y, YIN G H, et al. Large-diameter membrane fresnel diffraction elements for space telescope[J]. Optics and Precision Engineering, 2016, 24(6): 1289-1296. (in Chinese) doi: 10.3788/OPE.20162406.1289
    [75] DANIEL J. SCHROEDER. Reflecting Telescopes in Astronomical Optics (Second Edition) [M]. Elsevier Inc, 2000, 112-163.
    [76] NICHOLAS G, KEDAR K. Digital Binary MEMS Wavefront Control, US, 8379292-B2[P]. 2013-02-19.
    [77] LIESENER J, HUPFER W J, GEHNER R, et al. Tests on micromirror arrays for adaptive optics[J]. Proceedings of SPIE, 2004, 5553: 319-329. doi: 10.1117/12.558679
    [78] DEKANY R G, MACMARTIN D G, CHANAN G A, et al. Advanced segmented silicon space telescope (ASSIST)[J]. Proceedings of SPIE, 2002, 4849: 103-111. doi: 10.1117/12.460563
    [79] AGRAWAL B, KUBBY J. Applications of MEMS in segmented mirror space telescopes[J]. Proceedings of SPIE, 2011, 7931: 793102.
    [80] MARK C. The James Webb Space Telescope[J]. Advances in Space Research, 2008, 41(12): 1983-1991.
    [81] DEAN B H, ARONSTEIN D L, SMITH J S, et al. Phase retrieval algorithm for JWST flight and testbed telescope[J]. Proceedings of SPIE, 2006, 6265: 626511. doi: 10.1117/12.673569
    [82] WRIGHT G S, RIEKE G H, COLINA L, et al. The JWST MIRI instrument concept[J]. Proceedings of SPIE, 2004, 5487: 653-663. doi: 10.1117/12.551717
    [83] FREESE K, ILIE C, SPOLYAR D, et al. Supermassive dark stars: detectable in JWST[J]. The Astrophysical Journal, 2010, 716(2): 1397-1407. doi: 10.1088/0004-637X/716/2/1397
    [84] THOMAS E. Towards 1 m Resolution from GEO Executive Summary Report[B]. Thales Alenia Space, Italy, 2010: 1-13.
    [85] BOLCAR M R, FEINBERG L, FRANCE K, et al. Initial Technology Assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) Mission Concept Study[J]. Proceedings of SPIE, 2016, 9904: 99040J.
    [86] STAHL H P, HOPKINS R C. SLS Launched missions concept studies for LUVOIR mission[J]. Proceedings of SPIE, 2015, 9602: 960206.
    [87] FRANCE K, FLEMING B, WEST G, et al. The LUVOIR ultraviolet multi-object spectrograph (LUMOS): instrument definition and design[J]. Proceedings of SPIE, 2017, 10397: 1039713.
    [88] MENNESSON B, GAUDI S, SEAGER S, et al. The Habitable Exoplanet (HabEx) imaging mission: preliminary science drivers and technical requirements[J]. Proceedings of SPIE, 2016, 9904: 99040L.
    [89] 陈晓丽, 杨秉新, 王永辉, 等. 空间可展开光学系统主镜分块方案研究[J]. 航天返回与遥感,2008,29(1):28-33. doi: 10.3969/j.issn.1009-8518.2008.01.006

    CHEN X L, YANG B X, WANG Y H, et al. Segmentation of primary mirror for the space deployable optical system[J]. Spacecraft Recovery &Remote Sensing, 2008, 29(1): 28-33. (in Chinese) doi: 10.3969/j.issn.1009-8518.2008.01.006
    [90] 郭崇岭, 陈传志, 陈金宝, 等. 空间光学望远镜在轨建造中的结构机构技术[J]. 宇航学报,2022,43(2):158-166. doi: 10.3873/j.issn.1000-1328.2022.02.003

    GUO CH L, CHEN CH ZH, CHEN J B, et al. Structure and mechanism technology of in-space manufacturing space optical telescope[J]. Journal of Astronautics, 2022, 43(2): 158-166. (in Chinese) doi: 10.3873/j.issn.1000-1328.2022.02.003
    [91] 金建高, 阮宁娟, 苏云, 等. 空间大型光学遥感器主镜问题解决方法探讨[J]. 空间电子技术,2016,13(2):20-25,43. doi: 10.3969/j.issn.1674-7135.2016.02.005

    JIN J G, RUAN N J, SU Y, et al. Discussion for solution of huge space remote sensor primary mirror issue[J]. Space Electronic Technology, 2016, 13(2): 20-25,43. (in Chinese) doi: 10.3969/j.issn.1674-7135.2016.02.005
    [92] 乔彦峰, 刘坤, 段相永. 光学合成孔径成像技术及发展现状[J]. 中国光学与应用光学,2009,2(3):175-183.

    QIAO Y F, LIU S, DUAN X Y. Optical synthetic aperture imaging techniques and development[J]. Chinese Journal of Optics and Applied Optics, 2009, 2(3): 175-183. (in Chinese)
    [93] 范伟军, 周必方, 王海涛. 光学综合孔径成像中的傅里叶相位研究[J]. 光学学报,2004,24(3):408-412.

    FAN W J, ZHOU B F, WANG H T. Research of Fourier phase in optical synthetic-aperture imaging technique[J]. Acta Optica Sinica, 2004, 24(3): 408-412. (in Chinese)
    [94] LUCKE R L, RICKARD L J. Photon-limited synthetic-aperture imaging for planet surface studies[J]. Applied Optics, 2002, 41(24): 5084-5095. doi: 10.1364/AO.41.005084
    [95] LIU ZH, WANG SH Q, RAO CH H. The Co-phasing detection method for sparse optical synthetic aperture systems[J]. Chinese Physics B, 2012, 21(6): 069501. doi: 10.1088/1674-1056/21/6/069501
    [96] RHODES W T. Digital processing of synthetic aperture optical imagery[J]. Optical Engineering, 1974, 13(3): 267-274.
    [97] WU Y, HUI M, LI W Q, et al. MTF improvement for optical synthetic aperture system via mid-frequency compensation[J]. Optics Express, 2021, 29(7): 10249-10264. doi: 10.1364/OE.420512
    [98] CHUNG S J, MILLER D W, DE WECK O L. ARGOS testbed: study of multidisciplinary challenges of future spaceborne interferometric arrays[J]. Optical Engineering, 2004, 43(9): 2156-2167. doi: 10.1117/1.1779232
    [99] WONG M H. A dedicated space observatory for time-domain solar system science[Z]. AAS/Division for Planetary Sciences Meeting Abstracts. 2009.
    [100] CHUNG S J, LO B D M, MILLER D W, et al. . Multidisciplinary Control of a Sparse Interferometric Array Satellite Testbed[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA, 2013.
    [101] LAWSON P R, LAY O P, MARTIN S R, et al. Terrestrial planet finder interferometer 2007—2008 progress and plans[J]. Proceedings of SPIE, 2008, 7013: 70132N.
    [102] LAWSON P R, LAY O P, MARTIN S R, et al. Terrestrial planet finder interferometer: 2006—2007 progress and plans[J]. Proceedings of SPIE, 2007, 6693: 669308. doi: 10.1117/12.734914
    [103] BEICHMAN C, LAWSON P, LAY O, et al. Status of the terrestrial planet finder interferometer (TPF-I)[J]. Proceedings of SPIE, 2006, 6268: 62680S. doi: 10.1117/12.673583
    [104] LAWSON P R, AHMED A, GAPPINGER R O, et al. Terrestrial planet finder interferometer technology status and plans[J]. Proceedings of SPIE, 2006, 6268: 626828. doi: 10.1117/12.670318
    [105] GUARNIERI A M, BOMBACI O, CATALANO T F, et al. ARGOS: A fractioned geosynchronous SAR[J]. Acta Astronautica, 2019, 164: 444-457. doi: 10.1016/j.actaastro.2015.11.022
    [106] QIAN J H, WU X Y, LIU H W, et al. The structure research and design for beam steering and adjustment in Golay3 sparse-aperture imaging system[J]. Applied Sciences, 2022, 12(8): 4003.
    [107] STUBBS D, DUNCAN A, PITMAN J T, et al. Multiple instrument distributed aperture sensor (MIDAS) evolved design concept[J]. Proceedings of SPIE, 2004, 5550: 391-398. doi: 10.1117/12.560319
    [108] PITMAN J, DUNCAN A, STUBBS D, et al. Multiple instrument distributed aperture sensor (MIDAS) for remote sensing[J]. Proceedings of SPIE, 2004, 5570: 168-180.
    [109] SCUDERI S, GIULIANI A, PARESCHI G, et al. The ASTRI Mini-Array of Cherenkov telescopes at the Observatorio del Teide[J]. Journal of High Energy Astrophysics, 2022, 35: 52-68. doi: 10.1016/j.jheap.2022.05.001
    [110] SUZUMOTO R, IKARI S, MIYAMURA N, et al.. Experimental study for synthetic aperture telescope using formation flying micro-satellites for high-frequency and high-resolution GEO remote sensing[C]. 34th Annual Small Satellite Conference, 2020.
    [111] WANG D Y. Experimental study on imaging and image restoration of optical sparse aperture systems[J]. Optical Engineering, 2007, 46(10): 103201. doi: 10.1117/1.2799512
    [112] 马佳. 欧洲启动达尔文计划搜捕地外生命[J]. 今日科苑,2007(15):12-14.

    MA J. Europe launched the darwin plan to hunt for extraterrestrial life[J]. Modern Science, 2007(15): 12-14. (in Chinese)
    [113] 周程灏, 王治乐, 朱峰. 大口径光学合成孔径成像技术发展现状[J]. 中国光学,2017,10(1):25-38.

    ZHOU CH H, WANG ZH Y, ZHU F. Status of development of large-aperture optical synthetic aperture imaging technology[J]. China Optics, 2017, 10(1): 25-38. (in Chinese)
    [114] SUZUMOTO R, IKARI S, MIYAMURA N, et al.. Experimental study for synthetic aperture telescope using formation flying micro-satellites for high-frequency and high-resolution GEO remote sensing[C]. 34th Annual Small Satellite Conference. 2020.
    [115] 徐伟, 金光, 王家骐. 吉林一号轻型高分辨率遥感卫星光学成像技术[J]. 光学 精密工程,2017,25(8):1969-1978. doi: 10.3788/OPE.20172508.1969

    XU W, JIN G, WANG J Q. Optical imaging technology of JL-1 lightweight high resolution multispectral remote sensing satellite[J]. Optics and Precision Engineering, 2017, 25(8): 1969-1978. (in Chinese) doi: 10.3788/OPE.20172508.1969
    [116] DUNCAN A L, KENDRICK R L. Segmented planar imaging detector for electro-optic reconnaissance: US, 8913859[P]. 2014-12-16.
    [117] DUNCAN A L, KENDRICK R L. Segmented planar imaging detector for electro-optic reconnaissance (SPIDER) Zoom: US, 10012827[P]. 2018-07-03.
    [118] LV G M, LI Q, CHEN Y T, et al. An improved scheme and numerical simulation of segmented planar imaging detector for electro-optical reconnaissance[J]. Optical Review, 2019, 26(6): 664-675. doi: 10.1007/s10043-019-00548-w
    [119] CHU Q H, SHEN Y J, YUAN M, et al. Numerical simulation and optimal design of segmented planar imaging detector for electro-optical reconnaissance[J]. Optics Communications, 2017, 405: 288-296. doi: 10.1016/j.optcom.2017.08.021
    [120] 余恭敏, 晋利兵, 周峰, 等. 分块式平面光电侦察成像系统发展概述[J]. 航天返回与遥感,2018,39(5):1-9. doi: 10.3969/j.issn.1009-8518.2018.05.001

    YU G M, JIN L B, ZHOU F, et al. A review on development of segmented planar imaging detector for electro-optical reconnaissance system[J]. Spacecraft Recovery &Remote Sensing, 2018, 39(5): 1-9. (in Chinese) doi: 10.3969/j.issn.1009-8518.2018.05.001
    [121] BADHAM K, KENDRICK R, WUCHENICH D, et al.. Photonic integrated circuit-based imaging system for SPIDER[C]. 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), IEEE, 2017.
    [122] DESEILLIGNY M P, PAPARODITIS N. A multiresolution and optimization-based image matching approach: an application to surface reconstruction from Spot5-hrs stereo imagery[C]//Proc of the ISPRS Conference Topographic Mapping from Space. US, 2006.
    [123] MURTHY K, SHEARN M, SMILEY B D, et al. SkySat-1: very high-resolution imagery from a small satellite[J]. Proceedings of SPIE, 2014, 9241: 92411E.
    [124] DINARDJ A, ANFLO K, FRIEDHOFF P. On-orbit commissioning of high performance green propulsion (HPGP) in the SkySat constellation[C]. Small Satellite Conference, 2017.
    [125] 周宇, 王鹏, 傅丹膺. SkySat卫星的系统创新设计及启示[J]. 航天器工程,2015,24(5):91-98. doi: 10.3969/j.issn.1673-8748.2015.05.014

    ZHOU Y, WANG P, FU D Y, et al. System innovation and enlightenment of SkySat[J]. Spacecraft Engineering, 2015, 24(5): 91-98. (in Chinese) doi: 10.3969/j.issn.1673-8748.2015.05.014
    [126] JOHANSEN K, DUNNE A F, TU Y H, et al. Monitoring coastal water flow dynamics using sub-daily high-resolution SkySat satellite and UAV-based imagery[J]. Water Research, 2022, 219: 118531. doi: 10.1016/j.watres.2022.118531
    [127] 李峰, 杨雪, 鲁啸天, 等. 面向星载CMOS相机的超时相工作方式研究[J]. 遥感学报,2021,25(1):514-525.

    LI F, YANG X, LU X T, et al. A new hyper-temporal imaging mode for spaceborne CMOS cameras[J]. Journal of Remote Sensing, 2021, 25(1): 514-525. (in Chinese)
    [128] 谢伟, 陈皓, 秦前清. 基于多帧视频序列的盲超分辨率影像重建[J]. 数据采集与处理,2011,26(1):1-7. doi: 10.3969/j.issn.1004-9037.2011.01.001

    XIE W, CHEN H, QIN Q Q. Blind super-resolution image reconstruction based on multiframe video sequence[J]. Journal of Data Acquisition &Processing, 2011, 26(1): 1-7. (in Chinese) doi: 10.3969/j.issn.1004-9037.2011.01.001
    [129] ZHENG G A, HORSTMEYER R, YANG C H E. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7(9): 739-745. doi: 10.1038/nphoton.2013.187
    [130] HOLLOWAY J, WU Y, SHARMA M K, et al. SAVI: Synthetic apertures for long-range, subdiffraction-limited visible imaging using fourier ptychography[J]. Science Advances, 2017, 3(4): e1602564.
    [131] DONG S Y, HORSTMEYER R, SHIRADKAR R, et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging[J]. Optics Express, 2014, 22(11): 13586-13599. doi: 10.1364/OE.22.013586
    [132] HOLLOWAY J, ASIF M S, SHARMA M K, et al. Toward long-distance subdiffraction imaging using coherent camera arrays[J]. IEEE Transactions on Computational Imaging, 2017, 2(3): 251-265.
    [133] WANG C Y, HU M, TAKASHIMA Y, et al. Snapshot Ptychography on Array cameras[J]. Optics Express, 2022, 30(2): 2585-2598. doi: 10.1364/OE.447499
    [134] WU J CH, YANG F, CAO L C. Resolution enhancement of long-range imaging with sparse apertures[J]. Optics and Lasers in Engineering, 2022, 155: 107068. doi: 10.1016/j.optlaseng.2022.107068
    [135] 赵明, 王希明, 张晓慧, 等. 宏观傅里叶叠层超分辨率成像实验研究[J]. 激光与光电子学进展,2019,56(12):101-107.

    ZHAO M, WANG X M, ZHANG X H, et al. Experimental research on macroscopic Fourier ptychography super-resolution imaging[J]. Laser &Optoelectronics Progress, 2019, 56(12): 101-107. (in Chinese)
    [136] 相萌. 宏观傅里叶叠层成像的关键问题研究[D]. 西安: 中国科学院大学, 2021.

    XIANG M. Study on key problems of macroscopic Fourier ptychography imaging[D]. Xi’an: University of Chinese Academy of Sciences, 2021. (in Chinese)
  • 加载中
图(48) / 表(5)
计量
  • 文章访问数:  2039
  • HTML全文浏览量:  818
  • PDF下载量:  801
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 修回日期:  2022-05-31
  • 录用日期:  2022-07-26
  • 网络出版日期:  2022-08-03

目录

    /

    返回文章
    返回