留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯缺陷对光子晶体光吸收特性的调制

赵宏斌 苏安 尹向宝 蒙成举 江思婷 高英俊

赵宏斌, 苏安, 尹向宝, 蒙成举, 江思婷, 高英俊. 石墨烯缺陷对光子晶体光吸收特性的调制[J]. 中国光学(中英文), 2022, 15(3): 418-425. doi: 10.37188/CO.2021-0203
引用本文: 赵宏斌, 苏安, 尹向宝, 蒙成举, 江思婷, 高英俊. 石墨烯缺陷对光子晶体光吸收特性的调制[J]. 中国光学(中英文), 2022, 15(3): 418-425. doi: 10.37188/CO.2021-0203
ZHAO Hong-bin, SU An, YIN Xiang-bao, MENG Cheng-ju, JIANG Si-ting, GAO Ying-ju. The modulation effect of graphene defects on the light absorption properties of photonic crystals[J]. Chinese Optics, 2022, 15(3): 418-425. doi: 10.37188/CO.2021-0203
Citation: ZHAO Hong-bin, SU An, YIN Xiang-bao, MENG Cheng-ju, JIANG Si-ting, GAO Ying-ju. The modulation effect of graphene defects on the light absorption properties of photonic crystals[J]. Chinese Optics, 2022, 15(3): 418-425. doi: 10.37188/CO.2021-0203

石墨烯缺陷对光子晶体光吸收特性的调制

doi: 10.37188/CO.2021-0203
基金项目: 国家自然科学基金(No. 51161003);河池学院2018年高层次人才科研启动费项目(No. XJ2018GKQ017);河池学院2020年校级科研项目(No. 2020XJZC001)。
详细信息
    作者简介:

    赵宏斌(1997—),男,云南石林人,助教,学士,2020 年于河池学院获得理学学士学位,现工作于河池学院数理学院,主要从事光子晶体方面的研究。E-mail: 1280406426@qq.com

    苏 安(1973—),男,广西都安人,教授,硕士,2009年于广西大学获得理学硕士学位,现工作于河池学院数理学院,主要从事光子晶体方面的研究。E-mail: suan3283395@163.com

  • 中图分类号: O613.71;O734

The modulation effect of graphene defects on the light absorption properties of photonic crystals

Funds: Supported by National Natural Science Foundation of China (No. 51161003), High-level Talents Scientific Research Start-up Project in 2018 of Hechi University (No. XJ2018GKQ017), Scientific Research Project in 2020 of Hechi University (No. 2020XJZC001).
More Information
  • 摘要: 通过构造含石墨烯缺陷光子晶体结构模型($ {\rm{ACG}}^{K_1}$CB)NCGKC(${\rm{BCG}}^{K_2} $CA)M,利用传输矩阵法理论和计算机模拟仿真的方式,研究了石墨烯缺陷对光子晶体光吸收特性的调制作用。当光子晶体中引入石墨烯缺陷后,光子晶体的光吸收率增强,并出现明显的窄带吸收峰。随着周期数MK2增大,光子晶体的光吸收率增强,当M=6时吸收率达到96.55%,当K2=4时吸收率达到43.30%,而且吸收峰随M增大向短波方向移动,但随K2增大向长波方向移动。随着周期数K增大,光子晶体的光吸收率先增大到极大值后再减弱,且吸收峰向短波方向移动。随着A介质层(硅单质)厚度dA的增大,光子晶体的光吸收率增强,当dA=178.25 nm时吸收率达到48.54%,且吸收峰向长波方向移动;随着B、C介质层(分别为四氯化碳和砷化镓)厚度dBdC增大,光子晶体的光吸收率减弱,当dB=178.25 nm时吸收率为33.12%,当dC=155.25 nm时吸收率为25.89%,且吸收峰向长波方向移动。随着光入射角θ增大,光子晶体的光吸收率先增大到极大值后再减弱,且吸收峰向短波方向移动。研究结果表明石墨烯缺陷对光子晶体光吸收特性具有很好的调制作用,为新型光学吸收器、滤波器和全反射器等材料研究和选择提供理论参考。

     

  • 图 1  光子晶体结构模型

    Figure 1.  The structures of photonic crystal

    图 2  光子晶体的传输特性

    Figure 2.  Transmission characteristics of photonic crystals

    图 3  MK2K对吸收特性的影响

    Figure 3.  Absorption characteristics varying with different MK2 and K

    图 4  dAdBdC对吸收特性的影响

    Figure 4.  Absorption characteristics varying with different dAdB and dC

    图 5  入射角θ对吸收特性的影响

    Figure 5.  Absorption characteristics varying with incident angle θ

  • [1] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059-2062. doi: 10.1103/PhysRevLett.58.2059
    [2] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489. doi: 10.1103/PhysRevLett.58.2486
    [3] 苏安, 蒙成举, 唐秀福, 等. 对称结构光子晶体的表面光学Tamm态[J]. 红外与激光工程,2019,48(8):0817001. doi: 10.3788/IRLA201948.0817001

    SU A, MENG CH J, TANG X F, et al. Optical Tamm state on the surface of photonic crystal of symmetric structure[J]. Infrared and Laser Engineering, 2019, 48(8): 0817001. (in Chinese) doi: 10.3788/IRLA201948.0817001
    [4] 李天琦, 毛小洁, 雷健, 等. 固体激光器与光纤激光器对光子晶体光纤棒耦合的分析与对比[J]. 中国光学,2018,11(6):958-973. doi: 10.3788/co.20181106.0958

    LI T Q, MAO X J, LEI J, et al. Analysis and comparison of solid-state lasers and fiber lasers on the coupling of rod-type photonic crystal fiber[J]. Chinese Optics, 2018, 11(6): 958-973. (in Chinese) doi: 10.3788/co.20181106.0958
    [5] 许江勇, 周波, 苏安, 等. 左右手材料光子晶体带隙及表面波局域电场特性[J]. 红外与激光工程,2020,49(9):20200052. doi: 10.3788/IRLA20200052

    XU J Y, ZHOU B, SU A, et al. Band gap and local electric field characteristics of surface waves in left-handed and right-handed materials of photonic crystal[J]. Infrared and Laser Engineering, 2020, 49(9): 20200052. (in Chinese) doi: 10.3788/IRLA20200052
    [6] 苏安, 蒙成举, 江思婷, 等. 复介质对光量子阱光传输特性的激活效应[J]. 中国光学,2020,13(2):396-410. doi: 10.3788/co.20201302.0396

    SU A, MENG CH J, JIANG S T, et al. Activation effect of complex medium on the optical propagation properties of optical quantum well[J]. Chinese Optics, 2020, 13(2): 396-410. (in Chinese) doi: 10.3788/co.20201302.0396
    [7] 申家岭, 路元刚, 马海霞, 等. 基于双缺陷一维光子晶体的非线性激光限幅方法[J]. 中国激光,2019,46(8):0808001. doi: 10.3788/CJL201946.0808001

    SH J L, LU Y G, MA H X, et al. Nonlinear laser-limiting method based on one-dimensional photonic crystals with double defects[J]. Chinese Journal of Lasers, 2019, 46(8): 0808001. (in Chinese) doi: 10.3788/CJL201946.0808001
    [8] 潘文亮, 武校刚, 卢禹昊, 等. 一维缺陷型光子晶体湿敏特性研究[J]. 量子光学学报,2020,26(4):382-391.

    PAN W L, WU X G, LU Y H, et al. Study on the characteristics of humidity sensitive for one-dimensional photonic crystal with defects[J]. Journal of Quantum Optics, 2020, 26(4): 382-391. (in Chinese)
    [9] 苏安, 王高峰, 蒙成举, 等. 光子晶体二元缺陷微腔的光传输特性[J]. 红外与激光工程,2017,46(6):0620004. doi: 10.3788/IRLA201746.0620004

    SU A, WANG G F, MENG CH J, et al. Light propagation characteristic of dual defect microcavity of photonic crystal[J]. Infrared and Laser Engineering, 2017, 46(6): 0620004. (in Chinese) doi: 10.3788/IRLA201746.0620004
    [10] BRUNA M, BORINI S. Optical constants of graphene layers in the visible range[J]. Applied Physics Letters, 2009, 94(3): 031901. doi: 10.1063/1.3073717
    [11] SANG D K, WANG H D, GUO ZH N, et al. Recent developments in stability and passivation techniques of phosphorene toward next-generation device applications[J]. Advanced Functional Materials, 2019, 29(45): 1903419. doi: 10.1002/adfm.201903419
    [12] ZHANG L, GONG T, YU ZH Q, et al. Recent advances in hybridization, doping, and functionalization of 2D xenes[J]. Advanced Functional Materials, 2021, 31(1): 2005471. doi: 10.1002/adfm.202005471
    [13] WANG Y ZH, WU Q, WANG H D, et al. Thermally tunable microfiber knot resonator with flexible graphene heater[J]. Chinese Optics Letters, 2021, 19(5): 051301. doi: 10.3788/COL202119.051301
    [14] ZHANG Y T. Photon-assisted Fano resonance tunneling periodic double-well potential characteristics[J]. Chinese Optics, 2021, 14(5): 1251-1258. doi: 10.37188/CO.2020-0068
    [15] 曹暾, 刘宽, 李阳, 等. 可调谐光学超构材料及其应用[J]. 中国光学,2021,14(4):968-985. doi: 10.37188/CO.2021-0080

    CAO T, LIU K, LI Y, et al. Tunable optical metamaterials and their applications[J]. Chinese Optics, 2021, 14(4): 968-985. (in Chinese) doi: 10.37188/CO.2021-0080
    [16] 赵娟平. 单层石墨烯电子结构、光学与热力学性能研究[D]. 汉中: 陕西理工大学, 2019: 1-59.

    ZHAO J P. Study on electronic structure, optics and thermodynamic properties of single layer graphene[D]. Hanzhong: Shaanxi University of Technology, 2019: 1-59. (in Chinese)
    [17] 王磊, 李培丽. 基于光学Tamm态的石墨烯光开关的研究[J]. 光通信研究,2018(5):59-62.

    WANG L, LI P L. Study on graphene optical switch based on optical Tamm states[J]. Study on Optical Communications, 2018(5): 59-62. (in Chinese)
    [18] 王磊, 栾开智, 左依凡, 等. 基于光学Tamm态的石墨烯光调制器[J]. 中国激光,2018,45(11):1106001. doi: 10.3788/CJL201845.1106001

    WANG L, LUAN K ZH, ZUO Y F, et al. Graphene optical modulator based on optical Tamm states[J]. Chinese Journal of Lasers, 2018, 45(11): 1106001. (in Chinese) doi: 10.3788/CJL201845.1106001
    [19] 莫军, 冯国英, 杨莫愁, 等. 基于石墨烯的宽带全光空间调制器[J]. 物理学报,2018,67(21):214201. doi: 10.7498/aps.67.20180307

    MO J, FENG G Y, YANG M CH, et al. Graphene-based broadband all-optical spatial modulator[J]. Acta Physica Sinica, 2018, 67(21): 214201. (in Chinese) doi: 10.7498/aps.67.20180307
    [20] 高金霞, 兰云蕾, 武继江. 基于光子晶体异质结构的磁可调石墨烯多带吸收[J]. 发光学报,2020,41(5):624-630. doi: 10.3788/fgxb20204105.0624

    GAO J X, LAN Y L, WU J J. Magnetically tunable multi-band absorption of graphene based on photonic crystal heterostructure[J]. Chinese Journal of Luminescence, 2020, 41(5): 624-630. (in Chinese) doi: 10.3788/fgxb20204105.0624
    [21] YI L J, LI CH H. Light enhanced absorption of graphene based on parity-time symmetry structure[J]. Chinese Journal of Luminescence, 2022, 43(1): 119-128. doi: 10.37188/CJL.20210322
    [22] 刘金萍, 李欣, 王瑞荣, 等. 激光诱导聚二甲基硅氧烷制备石墨烯量子点[J]. 发光学报,2021,42(12):1900-1905. doi: 10.37188/CJL.20210251

    LIU J P, LI X, WANG R R, et al. Preparation of graphene quantum dots by laser-induced polydimethylsiloxane[J]. Chinese Journal of Luminescence, 2021, 42(12): 1900-1905. (in Chinese) doi: 10.37188/CJL.20210251
    [23] 王晓愚, 毕卫红, 崔永兆, 等. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究[J]. 物理学报,2020,69(19):194202. doi: 10.7498/aps.69.20200750

    WANG X Y, BI W H, CUI Y ZH, et al. Synthesis of photonic crystal fiber based on graphene directly grown on air-hole by chemical vapor deposition[J]. Acta Physica Sinica, 2020, 69(19): 194202. (in Chinese) doi: 10.7498/aps.69.20200750
    [24] KAIPA C S R, YAKOVLEV A B, HANSON G W, et al. Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies[J]. Physical Review B, 2012, 85(24): 245407. doi: 10.1103/PhysRevB.85.245407
  • 加载中
图(5)
计量
  • 文章访问数:  466
  • HTML全文浏览量:  272
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-22
  • 录用日期:  2022-03-01
  • 修回日期:  2021-12-14
  • 网络出版日期:  2022-03-01
  • 刊出日期:  2022-05-20

目录

    /

    返回文章
    返回