留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Si杂质扩散诱导InGaAs/GaAs(P)量子阱混杂研究

王予晓 朱凌妮 仲莉 孔金霞 刘素平 马骁宇

王予晓, 朱凌妮, 仲莉, 孔金霞, 刘素平, 马骁宇. Si杂质扩散诱导InGaAs/GaAs(P)量子阱混杂研究[J]. 中国光学(中英文), 2022, 15(3): 426-432. doi: 10.37188/CO.2021-0200
引用本文: 王予晓, 朱凌妮, 仲莉, 孔金霞, 刘素平, 马骁宇. Si杂质扩散诱导InGaAs/GaAs(P)量子阱混杂研究[J]. 中国光学(中英文), 2022, 15(3): 426-432. doi: 10.37188/CO.2021-0200
WANG Yu-xiao, ZHU Ling-ni, ZHONG Li, KONG Jin-xia, LIU Su-ping, MA Xiao-yu. InGaAs/GaAs(P) quantum well intermixing induced by Si impurity diffusion[J]. Chinese Optics, 2022, 15(3): 426-432. doi: 10.37188/CO.2021-0200
Citation: WANG Yu-xiao, ZHU Ling-ni, ZHONG Li, KONG Jin-xia, LIU Su-ping, MA Xiao-yu. InGaAs/GaAs(P) quantum well intermixing induced by Si impurity diffusion[J]. Chinese Optics, 2022, 15(3): 426-432. doi: 10.37188/CO.2021-0200

Si杂质扩散诱导InGaAs/GaAs(P)量子阱混杂研究

doi: 10.37188/CO.2021-0200
详细信息
    作者简介:

    王予晓(1995—),女,河南焦作人,中国科学院半导体研究所博士研究生,主要从事高功率半导体激光器研究。E-mail:wangyuxiao@semi.ac.cn

    朱凌妮(1983—),女,江苏宜兴人,博士,助理研究员,2012年于北京理工大学获得博士学位,主要从事大功率半导体激光器等方面研究。E-mail:lingxiao431@semi.ac.cn

    仲 莉(1980—),女,江苏无锡人,博士,研究员,博士生导师,2008年于中国科学院半导体研究所获得博士学位,主要从事大功率半导体激光器等方面研究。E-mail:zhongli@semi.ac.cn

  • 中图分类号: TN314+.3;TN315+.3;

InGaAs/GaAs(P) quantum well intermixing induced by Si impurity diffusion

More Information
  • 摘要: 腔面光学灾变损伤是制约半导体激光器输出功率以及可靠性的主要因素之一,量子阱混杂技术是最常用的解决腔面灾变性光学损伤的方法。为了制备高功率、高可靠性半导体激光器单管器件,对Si杂质诱导量子阱混杂工艺进行了探索。本文使用Si介质层作为扩散源,采用管式炉高温退火的方法进行Si杂质扩散诱导量子阱混杂研究。实验并分析了介质膜厚度、退火条件、量子垒材料、牺牲层材料等因素对InGaAs/GaAs(P)量子阱蓝移量的影响。实验发现,量子阱和量子垒的混杂效果随着扩散时间以及退火温度增加而增大,且对温度尤其敏感。当退火条件为780 ℃、10 h时,InGaAs/GaAsP结构的波长蓝移量达到70.5 nm,量子垒为GaAsP时比GaAs有更好的促进蓝移效果。相同外延结构下,InGaP牺牲层结构相比AlGaAs牺牲层有更大的波长蓝移。

     

  • 图 1  两种外延结构示意图

    Figure 1.  The structures of two types of epitaxial layers

    图 2  不同Si介质膜厚度下退火后的归一化PL谱

    Figure 2.  Normalized PL spectra varying with different Si dielectric film thicknesses after annealing

    图 3  当Si厚度为70 nm,牺牲层为InGaP,不同退火条件下的PL谱

    Figure 3.  PL spectra under different annealing conditions when the thickness of Si is 70 nm with InGaP as sacrificial layer

    图 4  800 ℃/10 h下退火后,W1、W2外延片在硅诱导下以及W2在SiN保护下的SIMS图

    Figure 4.  SIMS of samples with W1 and W2 structure induced by Si and W2 structure protected by SiN after 800 ℃、10 h annealing

    图 5  有无牺牲层的W1外延片在780 ℃、4 h条件下退火后的PL图像

    Figure 5.  PL spectra of structure W1 with and without a sacrificial layer after annealing at 780 ℃、4 h

    图 6  不同牺牲层结构的W2外延片在780 ℃、10 h条件下退火后的PL图像

    Figure 6.  PL spectra of structure W2 with different sacrificial layers after annealing at 780 ℃、10 h

  • [1] 宋悦, 宁永强, 秦莉, 等. 大功率半导体激光器抗腔面灾变性光学损伤技术综述[J]. 半导体光电,2020,41(5):618-626.

    SONG Y, NING Y Q, QIN L, et al. Review on the methods of preventing catastrophic optical mirror damage in high-power diode lasers[J]. Semiconductor Optoelectronics, 2020, 41(5): 618-626. (in Chinese)
    [2] ARSLAN S, GÜNDOĞDU S, DEMIR A, et al. Facet cooling in high-power InGaAs/AlGaAs lasers[J]. IEEE Photonics Technology Letters, 2019, 31(1): 94-97. doi: 10.1109/LPT.2018.2884465
    [3] 刘启坤, 孔金霞, 朱凌妮, 等. 电致发光用于大功率半导体激光器失效模式分析[J]. 发光学报,2018,39(2):180-187.

    LIU Q K, KONG J X, ZHU L N, et al. Failure mode analysis of high-power laser diodes by electroluminescence[J]. Chinese Journal of Luminescence, 2018, 39(2): 180-187. (in Chinese)
    [4] 葛晓红, 张瑞英, 郭春扬, 等. 多变量离子注入型量子阱混杂效应[J]. 激光与光电子学进展,2020,57(1):011409.

    GE X H, ZHANG R Y, GUO CH Y, et al. Multiple factor ion implantation-induced quantum well intermixing effect[J]. Laser &Optoelectronics Progress, 2020, 57(1): 011409. (in Chinese)
    [5] 郭春扬, 张瑞英, 刘纪湾, 等. Cu/SiO2逐层沉积增强无杂质空位诱导InGaAsP/InGaAsP量子阱混杂[J]. 半导体技术,2019,44(3):189-193.

    GUO CH Y, ZHANG R Y, LIU J W, et al. InGaAsP/InGaAsP quantum well intermixing induced by impurity free vacancy enhanced through Cu/SiO2 deposition[J]. Semiconductor Technology, 2019, 44(3): 189-193. (in Chinese)
    [6] JIA ZH K, YANG H, PERROTT A H, et al. Study on the proximity of QWI in InP-based AlGaInAs MQWs using the IFVD method and its application in single frequency teardrop laser diodes[J]. Optics Express, 2020, 28(21): 31904-31913. doi: 10.1364/OE.398118
    [7] 刘翠翠, 林楠, 熊聪, 等. Si杂质扩散诱导InGaAs/AlGaAs量子阱混杂的研究[J]. 中国光学,2020,13(1):203-216. doi: 10.3788/co.20201301.0203

    LIU C C, LIN N, XIONG C, et al. Intermixing in InGaAs/AlGaAs quantum well structures induced by the interdiffusion of Si impurities[J]. Chinese Optics, 2020, 13(1): 203-216. (in Chinese) doi: 10.3788/co.20201301.0203
    [8] 田伟男, 熊聪, 王鑫, 等. 基于GaAs膜的GaInP/AlGaInP无杂质空位扩散诱导量子阱混杂的研究[J]. 发光学报,2018,39(8):1095-1099. doi: 10.3788/fgxb20183908.1095

    TIAN W N, XIONG C, WANG X, et al. Impurity-free vacancy diffusion induces intermixing in GaInP/AlGaInP quantum wells using GaAs encapsulation[J]. Chinese Journal of Luminescence, 2018, 39(8): 1095-1099. (in Chinese) doi: 10.3788/fgxb20183908.1095
    [9] RICHARD T A, MAJOR JR J S, KISH F A, et al. Low-threshold disorder-defined buried-heterostructure AlxGa1−xAs-GaAs quantum well lasers by open-tube rapid thermal annealing[J]. Applied Physics Letters, 1990, 57(27): 2904-2906. doi: 10.1063/1.103748
    [10] 刘翠翠, 林楠, 马骁宇, 等. 带有非吸收窗口的高性能InGaAs/AlGaAs量子阱激光二极管[J]. 发光学报,2022,43(1):110-118.

    LIN C C, LIN N, MA X Y, et al. High performance InGaAs/AlGaAs quantum well semiconductor laser diode with nonabsorption window[J]. Chinese Journal of Luminescence, 2022, 43(1): 110-118. (in Chinese)
    [11] LEE J K, PARK K H, JANG D H, et al. Improvement of catastrophic optical damage (COD) level for high-power 0.98-μm GaInAs-GaInP laser[J]. IEEE Photonics Technology Letters, 1998, 10(9): 1226-1228. doi: 10.1109/68.705598
    [12] HIRAMOTO K, SAGAWA M, KIKAWA T, et al. High-power and highly reliable operation of Al-Free InGaAs-InGaAsP 0.98 μm lasers with a window structure fabricated by Si ion implantation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(3): 817-821. doi: 10.1109/2944.788455
    [13] GUIDO L J, JACKSON G S, PLANO W E, et al. Index-guided AlxGa1−xAs-GaAs quantum well heterostructure lasers fabricated by vacancy-enhanced impurity-induced layer disordering from an internal (Si2)y(GaAs)1−y source[J]. Applied Physics Letters, 1987, 50(10): 609-611. doi: 10.1063/1.98096
    [14] FU L, TAN H H, JOHNSTON M B, et al. Proton irradiation-induced intermixing in InGaAs/(Al)GaAs quantum wells and quantum-well lasers[J]. Journal of Applied Physics, 1999, 85(9): 6786-6789. doi: 10.1063/1.370291
    [15] DALLESASSE J M, PLANO W E, NAM D W, et al. Impurity-induced layer disordering in In0.5(AlxGa1−x)0.5P-InGaP quantum-well heterostructures: visible-spectrum-buried heterostructure lasers[J]. Journal of Applied Physics, 1989, 66(2): 482-487. doi: 10.1063/1.343562
  • 加载中
图(7)
计量
  • 文章访问数:  586
  • HTML全文浏览量:  312
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-16
  • 录用日期:  2022-01-21
  • 修回日期:  2021-12-16
  • 网络出版日期:  2022-01-28
  • 刊出日期:  2022-05-20

目录

    /

    返回文章
    返回