留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于介质超表面角度复用的太赫兹增强吸收谱

李向军 马婵 严德贤 裘国华 赵杨 杨佶 郭世辉

李向军, 马婵, 严德贤, 裘国华, 赵杨, 杨佶, 郭世辉. 基于介质超表面角度复用的太赫兹增强吸收谱[J]. 中国光学(中英文), 2022, 15(4): 731-739. doi: 10.37188/CO.2021-0197
引用本文: 李向军, 马婵, 严德贤, 裘国华, 赵杨, 杨佶, 郭世辉. 基于介质超表面角度复用的太赫兹增强吸收谱[J]. 中国光学(中英文), 2022, 15(4): 731-739. doi: 10.37188/CO.2021-0197
LI Xiang-jun, MA Chan, YAN De-xian, QIU Guo-hua, ZHAO Yang, YANG Ji, GUO Shi-hui. Enhancement of terahertz absorption spectrum based on the angle multiplexing of the dielectric metasurface[J]. Chinese Optics, 2022, 15(4): 731-739. doi: 10.37188/CO.2021-0197
Citation: LI Xiang-jun, MA Chan, YAN De-xian, QIU Guo-hua, ZHAO Yang, YANG Ji, GUO Shi-hui. Enhancement of terahertz absorption spectrum based on the angle multiplexing of the dielectric metasurface[J]. Chinese Optics, 2022, 15(4): 731-739. doi: 10.37188/CO.2021-0197

基于介质超表面角度复用的太赫兹增强吸收谱

doi: 10.37188/CO.2021-0197
基金项目: 国家重点研发计划资助项目(No. 2021YFF0600300);国家自然科学基金(No. 62001444,No. 62175223);浙江省自然科学基金(No. LQ20F010009);浙江省基础公益研究计划项目(No. LGF19F010003);温州市重大科技创新攻关项目(No. ZG2021037)
详细信息
    作者简介:

    李向军(1976—),男,山西长治人,博士,副教授,2011年于浙江大学获得博士学位,主要从事太赫兹器件研究。E-mail:xiangjun_li@cjlu.edu.cn

    严德贤(1991—),男,肃武威人,博士,副教授,2018年于天津大学获得博士学位,浙江大学博士后,主要从事太赫兹源及器件研究。E-mail: yandexian1991@163.com

  • 中图分类号: TN214

Enhancement of terahertz absorption spectrum based on the angle multiplexing of the dielectric metasurface

Funds: Supported by National Key R&D Program of China (No. 2021YFF0600300); National Natural Science Foundation of China (No. 62001444, No. 62175223); Natural Science Foundation of Zhejiang Province (No. LQ20F010009); Basic Public Welfare Research Project of Zhejiang Province (No. LGF19F010003); Wenzhou City Major Scientific and Technological Innovation Projects (No. ZG2021037).
More Information
  • 摘要:

    利用太赫兹波段独特的指纹谱可以实现有机大分子的快速检测识别,然而微量物质的太赫兹吸收谱测量仍非常有挑战性。本文针对微量有机物,提出了一种基于介质超表面角度复用的太赫兹吸收谱增强检测方案。其中超表面衬底和十字单元结构均为高阻硅,具有高Q谐振特性。不同太赫兹波入射角对应的超表面响应曲线上的谐振峰频率可覆盖0.50~0.57 THz。超表面上覆盖0.5~2.5 µm乳糖薄膜作为待测物时,各入射角度对应的谐振峰幅度随待测物的吸收谱大幅度改变,其包络线组成的吸收谱峰值比没有十字单元结构时最多增强可达82.59倍。仿真结果表明该介质超表面经过角度复用可在宽带范围内有效增强太赫兹吸收谱,经过优化设计可用于检测不同特征峰微量有机物质。

     

  • 图 1  基于介质超表面角度复用的太赫兹吸收谱增强检测原理示意图。(a)全硅介质超表面角度复用原理;(b)超表面的单元结构

    Figure 1.  Schematic diagram of enhanced detection of terahertz absorption spectrum based on dielectric metasurface angle multiplexing. (a) Angle multiplexing principle for all-silicon dielectric metasurface; (b) unit structure of the metasurface

    图 2  超表面的反射曲线随(a)太赫兹波入射角α,(b)h,(c)w及(d)l的变化情况

    Figure 2.  The reflections of the metasurface with changing of (a) the incident angle, (b) h, (c) w and (d) l

    图 3  超表面反射曲线的Q值随(a)太赫兹波入射角,(b)高度h,(c)宽度w及(d)长度l的变化情况

    Figure 3.  Q values of the reflection curve of the metasurface varying with (a) the incident angle of the terahertz wave, (b) h, (c) w and (d) l

    图 4  α-乳糖在0.45 THz~0.6 THz范围内的介电常数以及硅基底上涂布乳糖薄膜的响应曲线(0.50 THz~0.55 THz)。(a)介电常数;(b)反射率;(c)透射率;(d)吸收率

    Figure 4.  The dielectric constant of α-lactose at 0.45 THz~0.6 THz and the response curve of a film of lactose coated on a silicon (0.50 THz~0.55 THz). (a) dielectric constant; (b) reflectance; (c) transmittance; (d) absorptivity

    图 5  基于角度复用介质超表面的乳糖太赫兹吸收谱增强。(a)涂敷乳糖薄膜的介质超表面单元结构;(b)超表面没有涂敷乳糖的反射率;(c)超表面没有涂敷乳糖时的透射率;(d)超表面涂敷2 μm乳糖的反射率;(e)超表面涂敷2 μm乳糖的透射率;(f)超表面涂敷2 μm乳糖的吸收率与无涂敷情况对比

    Figure 5.  Enhancement of the terahertz absorption spectrum of lactose on the dielectric metasurface based on angle multiplexing. (a) The metasurface unit structure of the medium coated with lactose film; (b) the reflectance of the metasurface without lactose coating; (c) the transmittance of the metasurface without lactose coating; (d) the reflection of metasurface coated with 2 μm lactose; (e) the transmittance of metasurface coated on the 2 μm lactosee; (f) absorption of metasurface with and without lactose coating

    图 6  涂有乳糖薄膜介质超表面在角度复用时的电场分布。(a)α=25°(0.561 THz);(b)α=35°(0.543 THz);(c)α=45°(0.529 THz);(d)α=55°(0.517 THz)

    Figure 6.  Electric field distributions of the dielectric metasurface coated with lactose film by multiplexing incident angle. (a) α=25° (0.561 THz); (b) α=35° (0.543 THz); (c) α=45° (0.529 THz); (d) α=55° (0.517 THz)

    图 7  介质超表面涂敷不同厚度乳糖的增强吸收谱。(a)0.5 μm乳糖;(b)1.0 μm乳糖;(c)1.5 μm乳糖;(d)2.0 μm乳糖;(e)2.5 μm乳糖;(f)0.5~2.5 μm乳糖增强吸收谱(包络曲线)

    Figure 7.  Enhanced absorption spectra of dielectric metasurface coated with different thicknesses of lactose. (a) 0.5 μm lactose; (b) 1.0 μm lactose; (c) 1.5 μm lactose; (d) 2.0 μm lactose; (e) 2.5 μm lactose; (f) 0.5−2.5 μm lactose enhanced absorption spectra as envelope curves

    表  1  本文结构与其它介质超表面或超光栅结构的吸收谱增强效果对比

    Table  1.   Comparison of absorption enhancement performances for the structure proposed in this paper and other metasufaces and metaragratings

    文献单元结构分析物复用模式工作波段增强倍数
    [16]介质柱PMMA入射角中红外~50 倍
    [17]介质柱PMMA几何尺寸中红外~60 倍
    [19]介质光栅α-lactose入射角太赫兹~20 倍
    [20]介质光栅hBN入射角中红外~30 倍
    本文高阻硅十字α-lactose入射角太赫兹~80 倍
    下载: 导出CSV
  • [1] ZHANG X CH, XU J ZH. Introduction to THz Wave Photonics[M]. Boston: Springer, 2010.
    [2] TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105. doi: 10.1038/nphoton.2007.3
    [3] SHEN J X, ZHU ZH J, ZHANG Z CH, et al. Ultra-broadband terahertz fingerprint spectrum of melatonin with vibrational mode analysis[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2021, 247: 119141. doi: 10.1016/j.saa.2020.119141
    [4] XU W D, XIE L J, ZHU J F, et al. Terahertz biosensing with a graphene-metamaterial heterostructure platform[J]. Carbon, 2019, 141: 247-252. doi: 10.1016/j.carbon.2018.09.050
    [5] FEDERICI J F, SCHULKIN B, HUANG F, et al. THz imaging and sensing for security applications—explosives, weapons and drugs[J]. Semiconductor Science and Technology, 2005, 20(7): S266-S280. doi: 10.1088/0268-1242/20/7/018
    [6] ZHAN H L, ZHAO K, BAO R M, et al. Monitoring PM2.5 in the atmosphere by using terahertz time-domain spectroscopy[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2016, 37(9): 929-938. doi: 10.1007/s10762-016-0283-8
    [7] SULTANA J, ISLAM M S, AHMED K, et al. Terahertz detection of alcohol using a photonic crystal fiber sensor[J]. Applied Optics, 2018, 57(10): 2426-2433. doi: 10.1364/AO.57.002426
    [8] YEE C M, SHERWIN M S. High-Q terahertz microcavities in silicon photonic crystal slabs[J]. Applied Physics Letters, 2009, 94(15): 154104. doi: 10.1063/1.3118579
    [9] WANG Y H, LI X J, LANG T T, et al. Multiband guided-mode resonance filter in bilayer asymmetric metallic gratings[J]. Optics &Laser Technology, 2018, 103: 135-141.
    [10] GUPTA M, SRIVASTAVA Y K, MANJAPPA M, et al. Sensing with toroidal metamaterial[J]. Applied Physics Letters, 2017, 110(12): 121108. doi: 10.1063/1.4978672
    [11] GOMON D, SEDYKH E, RODRÍGUEZ S, et al. Influence of the geometric parameters of the electrical ring resonator metasurface on the performance of metamaterial absorbers for terahertz applications[J]. Chinese Optics, 2018, 11(1): 47-59. doi: 10.3788/co.20181101.0047
    [12] HAN S, CONG L Q, SRIVASTAVA Y K, et al. All-dielectric active terahertz photonics driven by bound states in the continuum[J]. Advanced Materials, 2019, 31(37): 1901921. doi: 10.1002/adma.201901921
    [13] ZHOU J Y, YAN SH, LI CH W, et al. Perfect ultraviolet absorption in graphene using the magnetic resonance of an all-dielectric nanostructure[J]. Optics Express, 2018, 26(14): 18155-18163. doi: 10.1364/OE.26.018155
    [14] LONG ZH W, LIANG Y ZH, FENG L, et al. Low-cost and high sensitivity glucose sandwich detection using a plasmonic nanodisk metasurface[J]. Nanoscale, 2020, 12(19): 10809-10815. doi: 10.1039/D0NR00288G
    [15] YESILKOY F, ARVELO E R, JAHANI Y, et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nature Photonics, 2019, 13(6): 390-396. doi: 10.1038/s41566-019-0394-6
    [16] LIANG Y ZH, CUI W L, LI L X, et al. Large-scale plasmonic nanodisk structures for a high sensitivity biosensing platform fabricated by transfer nanoprinting[J]. Advanced Optical Materials, 2019, 7(7): 1801269. doi: 10.1002/adom.201801269
    [17] 李向军, 候小梅, 程钢, 等. 基于柔性基底动态调焦石墨烯超表面聚焦反射镜的仿真研究[J]. 中国光学,2021,14(4):1019-1028. doi: 10.37188/CO.2020-0171

    LI X J, HOU X M, CHENG G, et al. Simulation on tunable graphene metasurface focusing mirror based on flexible substrate[J]. Chinese Optics, 2021, 14(4): 1019-1028. (in Chinese) doi: 10.37188/CO.2020-0171
    [18] 林婧, 李琦, 邱孟, 等. 人工原子间耦合: 超构表面调控电磁波的新自由度[J]. 中国光学,2021,14(4):717-735. doi: 10.37188/CO.2021-0030

    LIN J, LI Q, QIU M, et al. Coupling between Meta-atoms: a new degree of freedom in metasurfaces manipulating electromagnetic waves[J]. Chinese Optics, 2021, 14(4): 717-735. (in Chinese) doi: 10.37188/CO.2021-0030
    [19] LEITIS A, TITTL A, LIU M K, et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval[J]. Science Advances, 2019, 5(5): eaaw2871. doi: 10.1126/sciadv.aaw2871
    [20] TITTL A, LEITIS A, LIU M K, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360(6393): 1105-1109. doi: 10.1126/science.aas9768
    [21] ZHONG Y J, DU L H, LIU Q, et al. Ultrasensitive specific sensor based on all-dielectric metasurfaces in the terahertz range[J]. RSC Advances, 2020, 10(55): 33018-33025. doi: 10.1039/D0RA06463G
    [22] XIE Y N, LIU X Y, LI F J, et al. Ultra-wideband enhancement on mid-infrared fingerprint sensing for 2D materials and analytes of monolayers by a metagrating[J]. Nanophotonics, 2020, 9(9): 2927-2935. doi: 10.1515/nanoph-2020-0180
    [23] ZHU J F, JIANG SH, XIE Y N, et al. Enhancing terahertz molecular fingerprint detection by a dielectric metagrating[J]. Optics Letters, 2020, 45(8): 2335-2338. doi: 10.1364/OL.389045
    [24] RYBIN M V, KOSHELEV K L, SADRIEVA Z F, et al. High-Q supercavity modes in subwavelength dielectric resonators[J]. Physical Review Letters, 2017, 119(24): 243901. doi: 10.1103/PhysRevLett.119.243901
    [25] SHI X M, HAN ZH H. Enhanced terahertz fingerprint detection with ultrahigh sensitivity using the cavity defect modes[J]. Scientific Reports, 2017, 7(1): 13147. doi: 10.1038/s41598-017-13612-9
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  968
  • HTML全文浏览量:  421
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-12
  • 修回日期:  2021-12-13
  • 网络出版日期:  2022-05-24

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!