留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

532 nm皮秒脉冲激光对单晶硅的损伤特性研究

王佳敏 季艳慧 梁志勇 陈飞 郑长彬

王佳敏, 季艳慧, 梁志勇, 陈飞, 郑长彬. 532 nm皮秒脉冲激光对单晶硅的损伤特性研究[J]. 中国光学. doi: 10.37188/CO.2021-0160
引用本文: 王佳敏, 季艳慧, 梁志勇, 陈飞, 郑长彬. 532 nm皮秒脉冲激光对单晶硅的损伤特性研究[J]. 中国光学. doi: 10.37188/CO.2021-0160
WANG Jia-min, JI Yan-hui, LIANG Zhi-yong, Fei Chen, ZHENG Chang-bin. Study on the damage characteristics of 532 nm picosecond pulse laser to monocrystalline silicon[J]. Chinese Optics. doi: 10.37188/CO.2021-0160
Citation: WANG Jia-min, JI Yan-hui, LIANG Zhi-yong, Fei Chen, ZHENG Chang-bin. Study on the damage characteristics of 532 nm picosecond pulse laser to monocrystalline silicon[J]. Chinese Optics. doi: 10.37188/CO.2021-0160

532 nm皮秒脉冲激光对单晶硅的损伤特性研究

doi: 10.37188/CO.2021-0160
基金项目: 中国科学院创新交叉团队(No. JCTD-2020-13);国家自然科学基金面上项目(No. 61975203);中科院长春光机所重大创新项目(No. E10302Y3M0)
详细信息
    作者简介:

    王佳敏(1995—),女,内蒙古呼和浩特人,博士研究生,2018年于内蒙古大学获得学士学位,主要从事激光辐照效应方面的研究。E-mail: wangjiamin18@mails.ucas.ac.cn

    郑长彬(1981—),男,黑龙江富锦人,博士,副研究员,2005年于吉林大学获得硕士学位,2011年于哈尔滨工业大学获得博士学位,主要从事激光辐照效应方面的研究。E-mail:zhengchangbin@ciomp.ac.cn

  • 中图分类号: TN249

Study on the damage characteristics of 532 nm picosecond pulse laser to monocrystalline silicon

More Information
  • 摘要: 随着光电对抗和超短脉冲激光技术地发展,研究超短脉冲激光与单晶硅相互作用具有非常重要的理论和实际意义,然而,532 nm皮秒脉冲激光对单晶硅的损伤效应研究却鲜有报道。为了进一步明确532 nm皮秒脉冲激光对单晶硅的损伤机理,本文开展了532 nm皮秒脉冲激光辐照单晶硅的损伤效应实验研究,测定了损伤阈值,明确了损伤机理,探讨了低通量下的脉冲累积效应。首先,利用波长532 nm、脉冲宽度30 ps的激光器和金相显微镜,基于1-on-1的激光损伤测试方法,测定了单晶硅的零损伤概率阈值为0.52 J/cm2;其次,研究了皮秒激光辐照单晶硅在不同激光能量密度下的损伤形貌,发现532 nm皮秒脉冲激光对单晶硅的损伤表现为热影响损伤和等离子体冲击损伤,随着激光能量密度的增大,按主要的损伤机制可分为:热影响(0.52~3 J/cm2)、热烧蚀(3~50 J/cm2)和等离子烧蚀(>50 J/cm2),且损伤面积随激光能量密度分别对应不同的增长规律;最后,研究了低通量下多脉冲的累积效应,发现在0.52 J/cm2的激光能量密度下,连续辐照16个脉冲时表面形成热影响区,验证了多脉冲的累积效应可以降低单晶硅的激光损伤阈值。
  • 图  1  皮秒激光诱导损伤实验装置图

    Figure  1.  Schematic diagram of picosecond laser induced damage experiment setup

    图  2  损伤区域尺寸随激光能量密度的变化规律

    Figure  2.  The size of the damage area changes with the laser energy density

    图  3  不同能量密度下损伤形貌图

    Figure  3.  Damage morphography at different energy densities

    图  4  302 J/cm2能量密度的损伤形貌图

    Figure  4.  Damage topography of 302 J/cm2 energy density

    图  5  21.9 J/cm2能量密度的损伤形貌图

    Figure  5.  Damage topography of 21.9 J/cm2 energy density

    图  6  能量密度3.04 J/cm2的损伤形貌图

    Figure  6.  Damage morphography with energy density of 3.04 J/cm2

    图  7  脉冲累积效应的损伤形貌

    Figure  7.  Damage morphology of pulse accumulation effect

    图  8  烧蚀区域尺寸随脉冲数量的变化规律

    Figure  8.  Variation of the ablation zone size with the number of pulses

    图  9  脉冲累积效应的损伤形貌

    Figure  9.  Damage morphology of pulse accumulation effect

  • [1] XIE CH, MEYER R, FROEHLY L, et al. In-situ diagnostic of femtosecond laser probe pulses for high resolution ultrafast imaging[J]. Light:Science &Applications, 2021, 10(1): 126.
    [2] JIANG L, WANG A D, LI B, et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application[J]. Light:Science &Applications, 2018, 7(2): 17134.
    [3] MALINAUSKAS M, ŽUKAUSKAS A, HASEGAWA S, et al. Ultrafast laser processing of materials: from science to industry[J]. Light:Science &Applications, 2016, 5(8): e16133.
    [4] LIU Y, LIU L SH, TANG W, et al. Experimental study on the damage of optical materials by out of band composite laser[J]. Applied Sciences, 2020, 10(10): 3578. doi: 10.3390/app10103578
    [5] FINGER J, BORNSCHLEGEL B, REININGHAUS M, et al. Heat input and accumulation for ultrashort pulse processing with high average power[J]. Advanced Optical Technologies, 2018, 7(3): 145-155. doi: 10.1515/aot-2018-0008
    [6] CHICHKOV B N, MOMMA C, NOLTE S, et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 1996, 63(2): 109-115. doi: 10.1007/BF01567637
    [7] MERKLE L D, BASS M, SWIMM R T. Erratum: multiple pulse laser-induced bulk damage in crystalline and fused quartz at 1.064 and 0.532 õm[J]. Optical Engineering, 1986, 25(1): 251196. doi: 10.1117/12.7973801
    [8] MEYER J R, KRUER M R, BARTOLI F J. Optical heating in semiconductors: laser damage in Ge, Si, InSb, and GaAs[J]. Journal of Applied Physics, 1980, 51(10): 5513-5522. doi: 10.1063/1.327469
    [9] RUBLACK T, HARTNAUER S, MERGNER M, et al. Mechanism of selective removal of transparent layers on semiconductors using ultrashort laser pulses[J]. Proceedings of SPIE, 2012, 8247: 82470Z. doi: 10.1117/12.905741
    [10] SMIRNOV N A, KUDRYASHOV S I, RUDENKO A A, et al. Pulsewidth and ambient medium effects during ultrashort-pulse laser ablation of silicon in air and water[J]. Applied Surface Science, 2021, 562: 150243. doi: 10.1016/j.apsusc.2021.150243
    [11] 张明鑫, 李志明, 聂劲松, 等. 多脉冲飞秒激光烧蚀硅的热累积效应[J]. 光电子技术,2018,38(4):224-230.

    ZHANG M X, LI ZH M, NIE J S, et al. Heat accumulation effect of multipulse femtosecond laser ablation of silicon[J]. Optoelectronic Technology, 2018, 38(4): 224-230. (in Chinese)
    [12] WANG X, SHEN ZH H, LU J, et al. Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes[J]. Journal of Applied Physics, 2010, 108(3): 033103. doi: 10.1063/1.3466996
    [13] VAN WOERKOM T A, PERRAM G P, DOLASINSKI B D, et al. Picosecond laser ablation of metals and semiconductors with low-transverse order Gaussian beams[J]. Optical Engineering, 2020, 60(3): 031002.
    [14] SHAHEEN M E, GAGNON J E, FRYER B J. Studies on laser ablation of silicon using near IR picosecond and deep UV nanosecond lasers[J]. Optics and Lasers in Engineering, 2019, 119: 18-25. doi: 10.1016/j.optlaseng.2019.02.003
    [15] THORSTENSEN J, FOSS S E. Investigation of depth of laser damage to silicon as function of wavelength and pulse duration[J]. Energy Procedia, 2013, 38: 794-800. doi: 10.1016/j.egypro.2013.07.348
    [16] 郑长彬, 邵俊峰, 李雪雷, 等. 飞秒脉冲激光对硅基多层膜损伤特性[J]. 中国光学,2019,12(2):371-381. doi: 10.3788/co.20191202.0371

    ZHENG CH B, SHAO J F, LI X L, et al. Femtosecond pulsed laser induced damage characteristics on Si-based multi-layer film[J]. Chinese Optics, 2019, 12(2): 371-381. (in Chinese) doi: 10.3788/co.20191202.0371
    [17] 邵俊峰, 郭劲, 王挺峰. 飞秒激光与硅的相互作用过程理论研究[J]. 红外与激光工程,2014,43(8):2419-2424. doi: 10.3969/j.issn.1007-2276.2014.08.005

    SHAO J F, GUO J, WANG T F. Theoretical research on dynamics of femto-second laser ablation crystal silicon[J]. Infrared and Laser Engineering, 2014, 43(8): 2419-2424. (in Chinese) doi: 10.3969/j.issn.1007-2276.2014.08.005
    [18] MCDONALD J P, MISTRY V R, RAY K E, et al. Femtosecond pulsed laser direct write production of nano- and microfluidic channels[J]. Applied Physics Letters, 2006, 88(18): 183113. doi: 10.1063/1.2201620
    [19] BENOCCI R, BATANI D, ROMAN H E. Incubation models for under-threshold laser ablation with thermal dissipation[J]. Applied Physics B, 2019, 125(2): 22. doi: 10.1007/s00340-019-7132-0
    [20] KÜPER S, STUKE M. UV-excimer-laser ablation of polymethylmethacrylate at 248 nm: characterization of incubation sites with Fourier transform IR- and UV-spectroscopy[J]. Applied Physics A, 1989, 49(2): 211-215. doi: 10.1007/BF00616301
    [21] KÜPER S, STUKE M. Femtosecond UV excimer laser ablation[J]. Applied Physics B, 1987, 44(4): 199-204. doi: 10.1007/BF00692122
    [22] VAN DER LINDEN S, HAGMEIJER R, RÖMER G R B E. Picosecond pulsed underwater laser ablation of silicon and stainless steel: comparing crater analysis methods and analysing dependence of crater characteristics on water layer thickness[J]. Applied Surface Science, 2021, 540: 148005. doi: 10.1016/j.apsusc.2020.148005
  • 加载中
图(11)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  24
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 录用日期:  2021-11-18
  • 网络出版日期:  2021-11-18

目录

    /

    返回文章
    返回