留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于碳纳米薄膜/砷化镓范德华异质结的高性能自驱动光电探测器研究

霍婷婷 张冬冬 施祥蕾 潘宇 孙利杰 苏言杰

霍婷婷, 张冬冬, 施祥蕾, 潘宇, 孙利杰, 苏言杰. 基于碳纳米薄膜/砷化镓范德华异质结的高性能自驱动光电探测器研究[J]. 中国光学. doi: 10.37188/CO.2021-0149
引用本文: 霍婷婷, 张冬冬, 施祥蕾, 潘宇, 孙利杰, 苏言杰. 基于碳纳米薄膜/砷化镓范德华异质结的高性能自驱动光电探测器研究[J]. 中国光学. doi: 10.37188/CO.2021-0149
HUO Ting-ting, ZHANG Dong-dong, SHI Xiang-lei, PAN Yu, SUN Li-jie, SU Yan-jie. High-performance self-powered photodetectors based on the carbon Nanomaterial/GaAs vdW heterojunctions[J]. Chinese Optics. doi: 10.37188/CO.2021-0149
Citation: HUO Ting-ting, ZHANG Dong-dong, SHI Xiang-lei, PAN Yu, SUN Li-jie, SU Yan-jie. High-performance self-powered photodetectors based on the carbon Nanomaterial/GaAs vdW heterojunctions[J]. Chinese Optics. doi: 10.37188/CO.2021-0149

基于碳纳米薄膜/砷化镓范德华异质结的高性能自驱动光电探测器研究

doi: 10.37188/CO.2021-0149
基金项目: 国家自然科学基金(No. 61974089);上海市自然科学基金(No. 19ZR1426900)
详细信息
    作者简介:

    霍婷婷(1996—),女,山西运城人,硕士研究生,2018年、2021年分别于南昌大学和上海交通大学获得学士、硕士学位,主要从事光电子器件、范德华异质结等领域的研究。Email:huotingitng@sjtu.edu.cn

    孙利杰(1983—),男,河南新乡人,博士,研究员,2010年于中国科学技术大学获得博士学位,现为上海空间电源研究所空间电源技术国家重点实验室主任研究师,主要从事砷化镓太阳电池、新型光电器件等领域的研究。E-mail:sunlijielu@163.com

    苏言杰(1982—),男,河南商丘人,博士,副研究员/博士生导师,2012年于上海交通大学获得博士学位,现任职于上海交通大学电子信息与电气工程学院微纳电子学系,主要从事纳米材料与器件等领域的研究。E-mail:yanjiesu@sjtu.edu.cn

  • 中图分类号: TN362

High-performance self-powered photodetectors based on the carbon Nanomaterial/GaAs vdW heterojunctions

Funds: Supported by This work is supported by the National Natural Science Foundation of China (No. 61974089); the Shanghai Natural Science Foundation (No. 19ZR1426900).
More Information
  • 摘要: 基于碳纳米材料/体半导体范德华(vdW)异质结的光电器件可以同时实现碳纳米材料的超高载流子迁移率以及体半导体的优异光电性能,且具有结构简单、工艺简便、易于调控界面等优点。尤其是通过调控单壁碳纳米管(SWCNT)的直径/手性、费米能级等可以与体半导体形成能带匹配、具有原子级界面的新型混合维度vdW异质结。本文报道了一种基于(6,5)手性为主的SWCNT薄膜与n型GaAs所形成的pn结的宽光谱自驱动光电探测器,并利用石墨烯降低SWCNT薄膜内载流子的复合几率和促进载流子传输。实验结果表明,器件对405~1064 nm波段光子表现出高灵敏的光电响应,零偏压条件下最大光电响应度和比探测率分别可达1.214 A/W和2×1012 Jones。
  • 图  1  (a)石墨烯/SWCNT膜/GaAs vdW异质结光电探测器结构示意图;(b)石墨烯/SWCNT薄膜的SEM图片

    Figure  1.  (a) Schematic diagram of graphene/SWCNT film/GaAs vdW heterojunction photodetector structure; (b) SEM image of graphene/SWCNT film

    图  2  石墨烯/SWCNT膜/GaAs vdW异质结光电探测器在(a)暗态和(b)AM 1.5G条件下的J-V曲线

    Figure  2.  Typical J-V curves of graphene/SWCNT film/GaAs vdW heterojunction photodetector in (a) dark state and (b) AM 1.5G condition

    图  3  (a)和(b) 不同激光波长辐照下石墨烯/SWCNT膜/GaAs vdW异质结光电探测器的J-V曲线;(c)和(d) 零偏压时不同激光波长辐照下的光电响应重复性曲线

    Figure  3.  (a) (b) J-V curves of the graphene/SWCNT film/GaAs vdW heterojunction photodetector irradiated at different laser wavelengths. (c) (d) Photoelectric response repeatability curves at different laser wavelengths and zero bias

    图  4  405 nm激光辐照条件下器件的瞬态光响应曲线

    Figure  4.  Transient light response curve of the device under 405 nm laser irradiation

    图  5  零偏压条件下石墨烯/SWCNT膜/GaAs vdW异质结光电探测器的光电响应度(a~b)和比探测率随入射光功率密度改变而变化的曲线(c~d)

    Figure  5.  The responsivity (a~b) and detectivity (c~d) of graphene/SWCNT film/GaAs vdW heterojunction photodetectors as a function of incident light power density under zero bias conditions

    图  6  石墨烯/SWCNT膜/GaAs vdW异质结在光照时的能带结构示意图

    Figure  6.  Schematic diagram of the energy band structure of graphene/SWCNT film/GaAs vdW heterojunction exposed to light irradiaton

  • [1] CAI B F, YIN H, HUO T T, et al. Semiconducting single-walled carbon nanotube/graphene van der Waals junctions for highly sensitive all-carbon hybrid humidity sensors[J]. Journal of Materials Chemistry C, 2020, 8(10): 3386-3394. doi: 10.1039/C9TC06586E
    [2] LEI T, POCHOROVSKI I, BAO ZH N. Separation of semiconducting carbon nanotubes for flexible and stretchable electronics using polymer removable method[J]. Accounts of Chemical Research, 2017, 50(4): 1096-1104. doi: 10.1021/acs.accounts.7b00062
    [3] ZHANG J, LIU S Y, NSHIMIYIMANA J P, et al. Observation of van Hove singularities and temperature dependence of electrical characteristics in suspended carbon nanotube Schottky barrier transistors[J]. Nano-Micro Letters, 2018, 10(2): 25. doi: 10.1007/s40820-017-0171-3
    [4] CAI B F, SU Y J, TAO Z J, et al. Highly sensitive broadband single-walled carbon nanotube photodetectors enhanced by separated graphene nanosheets[J]. Advanced Optical Materials, 2018, 6(23): 1800791. doi: 10.1002/adom.201800791
    [5] YANG L J, WANG SH, ZENG Q SH, et al.. Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection[J]. Small, 2013, 9(8): 1225-1236.
    [6] HE X W, LÉONARD F, KONO J. Uncooled carbon nanotube photodetectors[J]. Advanced Optical Materials, 2015, 3(8): 989-1011. doi: 10.1002/adom.201500237
    [7] MA Z, HAN J, YAO SH, et al. Improving the performance and uniformity of carbon-nanotube-network-based photodiodes via yttrium oxide coating and decoating[J]. ACS Applied Materials &Interfaces, 2019, 11(12): 11736-11742.
    [8] LIU Y, WEI N, ZENG Q SH, et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability[J]. Advanced Optical Materials, 2016, 4(2): 238-245. doi: 10.1002/adom.201500529
    [9] TUNE D D, FLAVEL B S. Advances in carbon nanotube-silicon heterojunction solar cells[J]. Advanced Energy Materials, 2018, 8(15): 1703241. doi: 10.1002/aenm.201703241
    [10] ZHOU H X, YANG M, JI CH H, et al. Excellent-performance C60/graphene/SWCNT heterojunction with light-controlled enhancement of photocurrent[J]. ACS Sustainable Chemistry &Engineering, 2020, 8(10): 4276-4283.
    [11] GONG Y P, ADHIKARI P, LIU Q F, et al. Designing the interface of carbon nanotube/biomaterials for high-performance ultra-broadband photodetection[J]. ACS Applied Materials &Interfaces, 2017, 9(12): 11016-11024.
    [12] LI G H, SUJA M, CHEN M G, et al. Visible-blind UV photodetector based on single-walled carbon nanotube thin film/ZnO vertical heterostructures[J]. ACS Applied Materials &Interfaces, 2017, 9(42): 37094-37104.
    [13] SCAGLIOTTI M, SALVATO M, DE CRESCENZI M, et al. Influence of the contact geometry on single-walled carbon nanotube/Si photodetector response[J]. Applied Nanoscience, 2018, 8(5): 1053-1058. doi: 10.1007/s13204-018-0720-1
    [14] CHEN J X, OUYANG W X, YANG W, et al. Recent progress of heterojunction ultraviolet photodetectors: materials, integrations, and applications[J]. Advanced Functional Materials, 2020, 30(16): 1909909. doi: 10.1002/adfm.201909909
    [15] PERIYANAGOUNDER D, WEI T C, LI T Y, et al. Fast-response, highly air-stable, and water-resistant organic photodetectors based on a single-crystal Pt complex[J]. Advanced Materials, 2020, 32(2): 1904634. doi: 10.1002/adma.201904634
    [16] YANG W, CHEN J X, ZHANG Y, et al. Silicon-compatible photodetectors: trends to monolithically integrate photosensors with chip technology[J]. Advanced Functional Materials, 2019, 29(18): 1808182. doi: 10.1002/adfm.201808182
    [17] SALVATO M, SCAGLIOTTI M, DE CRESCENZI M, et al. Single walled carbon nanotube/Si heterojunctions for high responsivity photodetectors[J]. Nanotechnology, 2017, 28(43): 435201. doi: 10.1088/1361-6528/aa8797
    [18] KIM Y L, JUNG H Y, PARK S, et al. Voltage-switchable photocurrents in single-walled carbon nanotube–silicon junctions for analog and digital optoelectronics[J]. Nature Photonics, 2014, 8(3): 239-243. doi: 10.1038/nphoton.2014.1
    [19] 任智慧, 钟绵增, 杨珏晗, 等. 基于AsP/MoS2异质结的偏振光电探测器 [J]. 中国光学,2021,14(1):135-144. doi: 10.37188/CO.2020-0189

    REN ZH H, ZHONG M Z, YANG J H, et al. A polarization-sensitive photodetector based on a AsP/MoS2 heterojunction[J]. Chinese Optics, 2021, 14(1): 135-144. (in Chinese) doi: 10.37188/CO.2020-0189
    [20] 陈洪宇, 王月飞, 闫珺, 等. 基于Se和有机无机钙钛矿异质结的宽光谱光电探测器制备及其光电特性研究[J]. 中国光学,2019,12(5):1057-1063. doi: 10.3788/co.20191205.1057

    CHEN H Y, WANG Y F, YAN J, et al. Fabrication and photoelectric properties of organic-inorganic broad-spectrum photodetectors based on Se microwire/perovskite heterojunction[J]. Chinese Optics, 2019, 12(5): 1057-1063. (in Chinese) doi: 10.3788/co.20191205.1057
    [21] LIANG CH W, ROTH S. Electrical and optical transport of GaAs/carbon nanotube heterojunctions[J]. Nano Letters, 2008, 8(7): 1809-1812. doi: 10.1021/nl0802178
    [22] LI H, LOKE W K, ZHANG Q, et al. Physical device modeling of carbon nanotube/GaAs photovoltaic cells[J]. Applied Physics Letters, 2010, 96(4): 043501. doi: 10.1063/1.3293452
    [23] BEHNAM A, JOHNSON J, CHOI Y, et al. Metal-semiconductor-metal photodetectors based on single-walled carbon nanotube film–GaAs Schottky contacts[J]. Journal of Applied Physics, 2008, 103(11): 114315. doi: 10.1063/1.2938037
    [24] HUO T T, YIN H, ZHOU D Y, et al. Self-powered broadband photodetector based on single-walled carbon nanotube/GaAs heterojunctions[J]. ACS Sustainable Chemistry &Engineering, 2020, 8(41): 15532-15539.
    [25] 陶泽军, 霍婷婷, 尹欢, 等. 基于碳管/石墨烯/GaAs双异质结自驱动的近红外光电探测器[J]. 半导体光电,2020,41(2):164-168,172.

    TAO Z J, HUO T T, YIN H, et al. Self-powered near-infrared photodetector based on single-walled carbon nanotube/graphene/GaAs double heterojunctions[J]. Semiconductor Optoelectronics, 2020, 41(2): 164-168,172. (in Chinese)
  • 加载中
图(6)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  43
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 录用日期:  2021-10-20
  • 网络出版日期:  2021-10-20

目录

    /

    返回文章
    返回