留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温数字图像相关法变形测量中玻璃介质误差校正

任明阳 王立忠 付白强 陈仁虹 邬宏 王岩鹏

任明阳, 王立忠, 付白强, 陈仁虹, 邬宏, 王岩鹏. 高温数字图像相关法变形测量中玻璃介质误差校正[J]. 中国光学. doi: 10.37188/CO.2021-0144
引用本文: 任明阳, 王立忠, 付白强, 陈仁虹, 邬宏, 王岩鹏. 高温数字图像相关法变形测量中玻璃介质误差校正[J]. 中国光学. doi: 10.37188/CO.2021-0144
REN Ming-yang, WANG Li-zhong, FU Bai-qiang, CHEN Ren-hong, WU Hong, WANG Yan-peng. Error correction of glass medium in high temperature digital image correlation deformation measurement[J]. Chinese Optics. doi: 10.37188/CO.2021-0144
Citation: REN Ming-yang, WANG Li-zhong, FU Bai-qiang, CHEN Ren-hong, WU Hong, WANG Yan-peng. Error correction of glass medium in high temperature digital image correlation deformation measurement[J]. Chinese Optics. doi: 10.37188/CO.2021-0144

高温数字图像相关法变形测量中玻璃介质误差校正

doi: 10.37188/CO.2021-0144
基金项目: 国家自然科学基金资助项目(No. 51865057);中国航发四川燃气涡轮研究院外委课题(No. J201912024)
详细信息
    作者简介:

    任明阳(1995—),男,河南周口人,硕士研究生,2017年于长安大学获得学士学位,主要从事三维光学测量方面的研究。Email:18829040656@163.com

    王立忠(1968—),男,山东梁山人,博士,教授,博士生导师,2004年于西安交通大学获得博士学位,主要从事三维光学测量技术的研究。Email:wanglz@mail.xjtu.edu.cn

  • 中图分类号: TP391.4;O348.1

Error correction of glass medium in high temperature digital image correlation deformation measurement

Funds: Supported by National Natural Science Foundation of China (No. 51865057); AECC Sichuan Gas Turbine Establishment Entrusted Project (No. J201912024)
More Information
  • 摘要: 为了校正玻璃介质在高温变形测量中引起的测量误差,本文将玻璃介质作为相机标定模型的一部分,基于摄影测量技术和数字图像相关法,提出一种复杂环境下的双目相机标定方法,将其应用在高温变形测量中。首先,针对复杂环境下图像质量差引起的标定困难问题,采用带畸变校正的相机成像模型,通过捆绑调整的相机标定方法完成双目相机标定,提高了标定成功率和稳定性。其次,针对复杂环境下双目相机标定精度低的问题,分析镜头焦距、环境光干扰和玻璃与相机距离等因素对标定结果的影响,给出最佳标定参数,使得标定重投影误差由0.832个像素减少到0.132个像素。最后,采用有玻璃介质的测量环境,比较标定时有玻璃和标定时无玻璃两种的测量误差,证明了本方法能大幅减少测量误差。试验结果表明,该方法能够有效减少高温环境下玻璃介质导致的位移场测量误差,X,Y和Z轴位移场平均测量误差分别减少70.16%,76.51%和40.05%。本文的方法能够实现复杂环境下相机高精度的标定,标定稳定性好,是实现高温变形准确测量的有效途径。
  • 图  1  实际相机成像模型

    Figure  1.  Fig.1The actual camera imaging model

    图  2  相机标定的光路图

    Figure  2.  Fig. 2Camera calibrated light path diagram

    图  3  数字图像相关法

    Figure  3.  Digital image correlation method

    图  4  高温DIC测量试验系统

    Figure  4.  Fig.4High temperature DIC measurement test system

    图  5  实验室相机标定场景

    Figure  5.  Fig.5The laboratory camera calibrates the scene

    图  6  玻璃与相机距离对标定精度的影响

    Figure  6.  Fig.6Influence of distance between glass and camera on calibration accuracy

    图  7  实际标定环境

    Figure  7.  Fig.7Actual calibration environment

    图  8  总位移均值

    Figure  8.  Fig. 8Mean of total displacement

    图  9  X,Y和Z轴方向的位移均值和标准差

    Figure  9.  Mean and standard deviation of displacement in X, Y and Z axes

    图  10  最大主应变均值

    Figure  10.  Fig.10Maximum principal strain mean

    图  11  ,Y轴方向的应变均值和标准差

    Figure  11.  Fig.11Strain mean and standard deviation in X and Y directions

    图  12  试件50度到120度X,Y,Z轴方向位移场变化图像

    Figure  12.  Fig.12Variation image of displacement field in X, Y and Z axes direction from 50 °C to 120 °C of specimen

    图  13  测量坐标系及关键点

    Figure  13.  Fig.13Measurement coordinate system and key points

    图  14  不同方向平行线位移均值

    Figure  14.  14The mean displacement of parallel lines in different directions

    表  1  不同焦距下的重投影误差

    Table  1.   Tab. 1The reprojection error at different focal lengths

    畸变参数8 mm12 mm16 mm25 mm50 mm75 mm
    Sigma/pixel0.0240.0300.0390.0240.0400.048
    下载: 导出CSV
  • [1] 郜魏柯, 杜小平, 王阳, 等. 激光散斑目标探测技术综述[J]. 中国光学,2020,13(6):1182-1193. doi: 10.37188/CO.2020-0049

    GAO W K, DU X P, WANG Y, et al. Review of laser speckle target detection technology[J]. Chinese Optics, 2020, 13(6): 1182-1193. (in Chinese) doi: 10.37188/CO.2020-0049
    [2] 王永红, 张倩, 胡寅, 等. 显微条纹投影小视场三维表面成像技术综述[J]. 中国光学,2021,14(3):447-457. doi: 10.37188/CO.2020-0199

    WANG Y H, ZHANG Q, HU Y, et al. 3D small-field surface imaging based on microscopic fringe projection profilometry: a review[J]. Chinese Optics, 2021, 14(3): 447-457. (in Chinese) doi: 10.37188/CO.2020-0199
    [3] 祝祥, 邵双运, 宋志军. 基于线结构光传感器的轨道板几何形貌检测方法[J]. 中国光学,2018,11(5):841-850. doi: 10.3788/co.20181105.0841

    ZHU X, SHAO SH Y, SONG ZH J. A detection method based on line-structured light sensor for geometrical morphology of track slab[J]. Chinese Optics, 2018, 11(5): 841-850. (in Chinese) doi: 10.3788/co.20181105.0841
    [4] 乔美霞, 潘志伟, 黄生洪, 等. 真空环境下钨材料高温形变的数字相关测量技术研究[J]. 实验力学,2020,35(4):557-566. doi: 10.7520/1001-4888-19-066

    QIAO M X, PAN ZH W, HUANG SH H, et al. Investigation on digital image correlation measurement technique for high temperature deformation of tungsten materials in vacuum environment[J]. Journal of Experimental Mechanics, 2020, 35(4): 557-566. (in Chinese) doi: 10.7520/1001-4888-19-066
    [5] MAO W G, WANG Y J, HUANG H Y, et al. In situ characterizations of mechanical behaviors of freestanding (Gd0.9Yb0.1)2Zr2O7 coatings by bending tests under different temperatures based on digital image correlation[J]. Journal of the European Ceramic Society, 2020, 40(2): 491-502. doi: 10.1016/j.jeurceramsoc.2019.07.031
    [6] GRANT B M B, STONE H J, WITHERS P J, et al. High-temperature strain field measurement using digital image correlation[J]. The Journal of Strain Analysis for Engineering Design, 2009, 44(4): 263-271. doi: 10.1243/03093247JSA478
    [7] HAMMER J T, SEIDT J D, GILAT A. Strain measurement at temperatures up to 800°C utilizing digital image correlation[M]//JIN H, SCIAMMARELLA C, YOSHIDA S, et al. . Advancement of Optical Methods in Experimental Mechanics, Volume 3. Cham: Springer, 2014: 167-170.
    [8] GUO X, LIANG J, TANG ZH Z, et al. High-temperature digital image correlation method for full-field deformation measurement captured with filters at 2600°C using spraying to form speckle patterns[J]. Optical Engineering, 2014, 53(6): 063101. doi: 10.1117/1.OE.53.6.063101
    [9] SU Y Q, YAO X F, WANG SH, et al. Improvement on measurement accuracy of high-temperature DIC by grayscale-average technique[J]. Optics and Lasers in Engineering, 2015, 75: 10-16. doi: 10.1016/j.optlaseng.2015.06.003
    [10] 段淇元, 宫文然, 郭保桥, 等. 高温数字图像相关方法中的制斑和图像处理技术[J]. 清华大学学报(自然科学版),2019,59(6):425-431.

    DUAN Q Y, GONG W R, GUO B Q, et al. Techniques of speckle fabrication and imgae processing for high temperature digital image correlation[J]. Journal of Tsinghua University (Science &Technology), 2019, 59(6): 425-431. (in Chinese)
    [11] WANG H Q, ZHANG Q, GE P X, et al. Thermal radiation elimination method for high-temperature digital image correlation using polarization camera[J]. Measurement Science and Technology, 2021, 32(6): 065203. doi: 10.1088/1361-6501/abed87
    [12] VALERI G, KOOHBOR B, KIDANE A, et al. Determining the tensile response of materials at high temperature using DIC and the virtual fields method[J]. Optics and Lasers in Engineering, 2017, 91: 53-61. doi: 10.1016/j.optlaseng.2016.11.004
    [13] 胡悦, 王永红, 鲍思源, 等. 高温下数字图像相关散斑最优成像探究[J]. 中国光学,2018,11(5):728-735. doi: 10.3788/co.20181105.0728

    HU Y, WANG Y H, BAO S Y, et al. Optimal imaging of digital image correlation speckle under high temperature[J]. China Optics, 2018, 11(5): 728-735. (in Chinese) doi: 10.3788/co.20181105.0728
    [14] LIU M, GUO J, HUI C Y, et al. Application of Digital Image Correlation (DIC) to the measurement of strain concentration of a PVA dual-crosslink hydrogel under large deformation[J]. Experimental Mechanics, 2019, 59(7): 1021-1032. doi: 10.1007/s11340-019-00520-4
    [15] LYONS J S, LIU J, SUTTON M A. High-temperature deformation measurements using digital-image correlation[J]. Experimental Mechanics, 1996, 36(1): 64-70. doi: 10.1007/BF02328699
    [16] SU Y Q, YAO X F, WANG SH, et al. Refraction error correction for deformation measurement by digital image correlation at elevated temperature[J]. Optical Engineering, 2017, 56(3): 034106. doi: 10.1117/1.OE.56.3.034106
    [17] 施佳豪, 王庆, 冯悠扬. 基于三维标定板的相机标定方法[J]. 传感器与微系统,2021,40(6):48-51.

    SHI J H, WANG Q, FENG Y Y. Camera calibration method based on 3D calibration plate[J]. Transducer and Microsystem Technologies, 2021, 40(6): 48-51. (in Chinese)
    [18] 郑冬, 冯鹏, 龙邹荣, 等. 面向多因素工况下的相机标定精度综述[J]. 国外电子测量技术,2020,39(8):109-116.

    ZHENG D, FENG P, LONG Z R, et al. Summary of camera calibration accuracy for multi-factor operating conditions[J]. Foreign Electronic Measurement Technology, 2020, 39(8): 109-116. (in Chinese)
    [19] 支健辉, 董新民, 孔星炜, 等. 相机标定的外界影响因素分析[J]. 应用光学,2014,35(2):286-291.

    ZHI J H, DONG X M, KONG X W, et al. Analysis of external influence factors in camera calibration[J]. Journal of Applied Optics, 2014, 35(2): 286-291. (in Chinese)
    [20] VERBIEST F, PROESMANS M, VAN GOOL L. Modeling the effects of windshield refraction for camera calibration[C]//Proceedings of the 16th European Conference on Computer Vision. Glasgow: Springer, 2020: 397-412.
    [21] VALLÉE C, FORTUNÉ D, LERINTIU C. On the dual variable of the Cauchy stress tensor in isotropic finite hyperelasticity[J]. Comptes Rendus Mécanique, 2008, 336(11-12): 851-855.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  47
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-10-18

目录

    /

    返回文章
    返回