留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矩形大口径激光光束质量评价光学系统设计

潘国涛 闫钰锋 于信 张雷 孙阔 白素平 孙宏申

潘国涛, 闫钰锋, 于信, 张雷, 孙阔, 白素平, 孙宏申. 矩形大口径激光光束质量评价光学系统设计[J]. 中国光学(中英文), 2022, 15(2): 306-317. doi: 10.37188/CO.2021-0130
引用本文: 潘国涛, 闫钰锋, 于信, 张雷, 孙阔, 白素平, 孙宏申. 矩形大口径激光光束质量评价光学系统设计[J]. 中国光学(中英文), 2022, 15(2): 306-317. doi: 10.37188/CO.2021-0130
PAN Guo-tao, YAN Yu-feng, YU Xin, ZHANG Lei, SUN Kuo, BAI Su-ping, SUN Hong-shen. Design of optical system for quality evaluation of a large rectangular aperture laser beam[J]. Chinese Optics, 2022, 15(2): 306-317. doi: 10.37188/CO.2021-0130
Citation: PAN Guo-tao, YAN Yu-feng, YU Xin, ZHANG Lei, SUN Kuo, BAI Su-ping, SUN Hong-shen. Design of optical system for quality evaluation of a large rectangular aperture laser beam[J]. Chinese Optics, 2022, 15(2): 306-317. doi: 10.37188/CO.2021-0130

矩形大口径激光光束质量评价光学系统设计

doi: 10.37188/CO.2021-0130
基金项目: 吉林省科技发展计划项目(No. 20200401054GX);长春理工大学青年基金(No. XQNJJ-2019-01);吉林省教育厅“十三五”科学技术项目(No. JJKH20200756KJ);高等学校学科创新引智计划(No. D21009)
详细信息
    作者简介:

    潘国涛(1998—),男,天津人,硕士研究生,2020年于长春理工大学光电工程学院获得学士学位,研究方向包括光学设计,光机结构设计,误差分析,光电检测技术。E-mail: 851993727@qq.com

    闫钰锋(1978—),男,吉林长春人,工学博士,教授,博士生导师,2010于长春理工大学测试计量技术与仪器专业获得博士学位,研究方向包括:光机结构设计,光电检测技术,仪器精度分析,光学测量,主要从事光电仪器设计、精密光电测量技术等。E-mail: yanyufeng@cust.edu.cn

  • 中图分类号: TG502.33;TH74

Design of optical system for quality evaluation of a large rectangular aperture laser beam

Funds: Supported by Science and Technology Development Project of Jilin Province (No. 20200401054GX); Youth Fund of Changchun University of Science and Technology (No. XQNJJ-2019-01); “The Thirteenth Five-Year Plan” Science and Technology Project of the Education Department of Jilin Province (No. JJKH20200756KJ); The 111 Project of China (No. D21009)
More Information
  • 摘要: 自适应光学校正技术可有效提升固体板条激光器的光束质量,但随着激光器输出功率的提升,输出光束口径逐渐增加,系统体积逐渐增大,自适应光学校正系统的设计难度也增加了。因此,在满足自适应光学校正系统中共轭探测等需求的前提下,统筹优化系统的尺寸参数,同时实现波前相位、光束质量评估等多参数的检测具有一定的研究意义。本文在系统整体尺寸为350 mm×180 mm×220 mm(长×宽×高)的条件下,研究实现了板条激光器输出160 mm×120 mm矩形光束多参数的检测。针对探测口径大、筒长限制、长出瞳距等技术要求,首先,利用双高斯初始结构的消像差特点,结合非球面技术,采用大倍率光束压缩后分光探测的设计方案,实现多参数的同时探测。其次,基于摄远成像和共轭成像等原理,确定系统初始参数。接着,建立仿真模型分析系统的成像质量和公差,为实验的搭建提供依据。最后,搭建实验平台验证设计结果。结果表明:所设计系统可在满足物像共轭、尺寸约束等条件下,实现对大口径矩形光束的共轭波前探测、光强均匀度检测和光束质量评估。实验测得被测光束β因子为1.24倍衍射极限,均匀度为73.8%,满足技术指标要求。

     

  • 图 1  矩形大口径激光光束质量评价系统示意图

    Figure 1.  Schematic diagram of evaluation system of the large rectangular aperture laser beam quality

    图 2  系统2D结构图

    Figure 2.  Schematic diagram of system (2D structure)

    图 3  主缩束系统的光学结构示意图

    Figure 3.  Schematic diagram of optical structure of main beam compression system

    图 4  非球面子午曲率和弧矢曲率曲线图

    Figure 4.  Curves of tangential and sagittal curvature of aspheric surfaces

    图 5  主缩束系统像质评价

    Figure 5.  Image quality evaluation results of the main beam compression system

    图 6  光束质量探测子系统波像差

    Figure 6.  Wavefront aberration of the beam quality detection subsystem

    图 7  光束质量探测子系统2D图

    Figure 7.  2D diagram of the beam quality detection subsystem

    图 8  光束质量探测系统2D图

    Figure 8.  2D diagram of the beam quality detection system

    图 9  光束质量探测系统像质评价

    Figure 9.  Evaluation results of the image quality of the beam quality detection system

    图 10  光束均匀性探测子系统波像差

    Figure 10.  Wavefront aberration of the beam uniformity detection subsystem

    图 11  光束均匀性探测子系统2D图

    Figure 11.  2D diagram of beam uniformity detection subsystem

    图 12  光束均匀性探测系统加入理想透镜2D图

    Figure 12.  2D diagram of the beam uniformity detection system with an ideal lens

    图 13  光束均匀性探测系统像质分析

    Figure 13.  Evaluation of the image quality of the beam uniformity detection system

    图 14  矩形大口径近红外激光光束质量评价系统

    Figure 14.  Beam quality evaluation system of the large rectangular aperture near-infrared laser

    图 15  哈特曼传感器光斑阵列图像

    Figure 15.  Spot array image of Hartmann sensor

    图 16  光束质量的探测图像

    Figure 16.  Detection image of the beam quality

    图 17  光束均匀性的探测图像

    Figure 17.  Detection image of the beam uniformity

    表  1  激光光束质量评价系统的技术指标

    Table  1.   The technical specifications of the laser beam quality evaluation system

    参数数值
    主缩束装置倍率11×
    主缩束系统通光口径160 mm×120 mm
    视场±3′
    波长(1064±0.3) nm
    主缩束入瞳位置500 mm
    主缩束出瞳位置≥40 mm
    主缩束系统筒长≤320 mm
    主缩束系统配合光束质量
    探测光学系统EFFL
    5500 mm
    光束均匀性探测光学系统
    缩束倍率
    4.5×
    光束质量β因子≤1.3×DL
    系统整体尺寸350 mm×180 mm×220 mm
    (长×宽×高)
    下载: 导出CSV

    表  2  主缩束系统透镜数据

    Table  2.   Lens data of the main beam compression system

    TypeRadiusThicknessGlass
    Even Asphere440.00022.893H-ZLAF52A
    Standard−2924.2681.000
    Standard231.43128.018H-ZLAF55D
    Standard925.07956.403
    Standard394.60210.800H-ZF73
    Standard64.28230.000H-ZLAF68C
    Standard191.455154.885
    Standard−13.4352.009H-ZLAF55D
    Standard−1053.1544.077
    Standard−20.4884.037H-ZLAF53B
    Standard−13.4850.811
    Standard311.1824.496H-ZLAF53B
    Standard−25.21241.405
    下载: 导出CSV

    表  3  光束质量探测子系统透镜数据

    Table  3.   Lens data of beam quality detection subsystem

    RadiusThicknessGlass
    36.5237.047H-ZLA
    415.69120.267
    −38.3848.628H-ZF88
    155.06438.737
    −124.9045.558H-ZLA
    12.28545.272
    下载: 导出CSV

    表  4  光束质量探测系统的公差数据

    Table  4.   Tolerance data of beam quality detection system

    No.RadiusThickness/mmDecenter
    (X/Y)/mm
    Tilt
    (X/Y)/(′)
    IndexAbbe.
    Len1±0.02±0.025±0.01±0.7±0.0005±0.08%
    Len2±0.02±0.025±0.01±0.6±0.0005±0.08%
    Len3±0.02±0.025±0.01±0.7±0.0005±0.08%
    Len4±0.03±0.025±0.03±0.1±0.002±0.2%
    Len5±0.03±0.0375±0.01±1.5±0.002±0.2%
    Len6±0.03±0.0375±0.02±1.5±0.002±0.2%
    Len7±0.03±0.0375±0.02±2±0.002±0.3%
    Len8±0.03±0.0375±0.02±2±0.002±0.3%
    Len9±0.03±0.0375±0.02±2±0.002±0.3%
    下载: 导出CSV

    表  5  光束质量探测系统的1000次蒙特卡罗分析结果

    Table  5.   1000 Monte Carlo statistical analysis results of the beam quality detection system

    Percentage of Monte Carlo/%RMS Wavefront
    980.2715
    900.1871
    800.1586
    500.1109
    下载: 导出CSV

    表  6  光束均匀性探测子系统透镜数据

    Table  6.   Lens data of the beam uniformity detection subsystem

    RadiusThicknessGlass
    66.7523.964H-ZF7LA
    Infinity0.800
    −154.4566.000H-ZF7LAGT
    −340.621117.358
    −5.6933.326H-K9L
    −7.2771.000
    −23.1273.893H-ZLAF68N
    −10.3853.000
    −6.2473.950H-K9L
    −6.24726.932
    下载: 导出CSV

    表  7  光束均匀性探测系统公差数据

    Table  7.   Tolerance data of the beam uniformity detection system

    No.RadiusThicknessDecenter (X/Y)/mmTilt (X/Y)/(′)IndexAbbe.
    Len1±0.02±0.025 mm±0.01±0.8±0.0005±0.08%
    Len2±0.02±0.025 mm±0.01±0.6±0.0005±0.08%
    Len3±0.02±0.025 mm±0.01±0.8±0.0005±0.08%
    Len4±0.03±0.035 mm±0.03±1.5±0.0005±0.2%
    Len5±0.03±0.035 mm±0.01±1.5±0.003±0.2%
    Len6±0.03±0.035 mm±0.03±1.5±0.003±0.2%
    Len7±0.03±0.035 mm±0.03±3.0±0.001±0.2%
    Len8±0.03±0.035 mm±0.03±3.0±0.003±0.2%
    Len9±0.03±0.035 mm±0.03±3.0±0.003±0.2%
    Len10±0.03±0.035 mm±0.03±3.0±0.003±0.2%
    Len11±0.03±0.035 mm±0.03±3.0±0.003±0.2%
    下载: 导出CSV

    表  8  光束均匀性探测系统1000次蒙特卡罗分析结果

    Table  8.   1000 Monte Carlo statistical analysis results of the beam uniformity detection system

    Percentage of Monte CarloRMS Wavefront
    98%0.2403
    90%0.1874
    80%0.1625
    50%0.1189
    下载: 导出CSV
  • [1] KOSSOWSKY R, JELINEK M, WALTER R F. High Power Lasers——Science and Engineering[M]. Dordrecht: Springer, 1996.
    [2] LIU B L, WANG ZH CH, YANG F, et al. High brightness 556 nm laser by frequency doubling of a 1112 nm Nd∶YAG laser[J]. IEEE Photonics Technology Letters, 2014, 26(10): 969-972. doi: 10.1109/LPT.2014.2309795
    [3] 唐睿, 高子叶, 吴正茂, 等. 基于SESAM被动调Q的激光二极管泵浦Yb∶CaYAlO4脉冲激光器[J]. 中国光学,2019,12(1):167-178. doi: 10.3788/co.20191201.0167

    TANG R, GAO Z Y, WU ZH M, et al. Output characteristics of diode-pumped passively Q-switched Yb∶CaYAlO4 pulsed laser based on a SESAM[J]. Chinese Optics, 2019, 12(1): 167-178. (in Chinese) doi: 10.3788/co.20191201.0167
    [4] 刘学胜, 董剑, 徐爱东, 等. 双程放大740 mJ TEC冷却LD泵浦Nd∶YAG激光器[J]. 发光学报,2018,39(7):991-996. doi: 10.3788/fgxb20183907.0991

    LIU X SH, DONG J, XU A D, et al. Two-pass amplifier 740 mJ diode-pumped Nd∶YAG laser with thermoelectric cooler[J]. Chinese Journal of Luminescence, 2018, 39(7): 991-996. (in Chinese) doi: 10.3788/fgxb20183907.0991
    [5] 岱钦, 张善春, 杨帆, 等. 高光束质量高斯非稳腔固体激光器研究[J]. 中国光学,2019,12(3):559-566. doi: 10.3788/co.20191203.0559

    DAI Q, ZHANG SH CH, YANG F, et al. Research on the high beam quality of Gaussian unstable resonators in solid state lasers[J]. Chinese Optics, 2019, 12(3): 559-566. (in Chinese) doi: 10.3788/co.20191203.0559
    [6] YU X, DONG L ZH, LAI B H, et al. Automatic low-order aberration correction based on geometrical optics for slab lasers[J]. Applied Optics, 2017, 56(6): 1730-1739. doi: 10.1364/AO.56.001730
    [7] FAN ZH W, QIU J S, KANG ZH J, et al. High beam quality 5 J, 200 Hz Nd: YAG laser system[J]. Light:Science &Applications, 2017, 6(3): e17004.
    [8] 于信. 板条激光低阶像差自动校正技术研究[D]. 成都: 电子科技大学, 2018: 1-14.

    YU X. Research on automatic low-order aberration correction of slab laser[D]. Chengdu: University of Electronic Science and Technology of China, 2018: 1-14. (in Chinese)
    [9] 相里微. 大功率激光波前测量系统设计[D]. 西安: 西安电子科技大学, 2012: 21-24.

    XIANG L W. Design of high-power laser wavefront measurement system[D]. Xi’an: Xidian University, 2012: 21-24. (in Chinese)
    [10] 张成栋. 激光光束质量诊断与测量研究[D]. 长沙: 国防科学技术大学, 2017: 30-38.

    ZHANG CH D. Diagnosis and measurement of laser beam quality[D]. Changsha: National University of Defense Technology, 2017: 30-38. (in Chinese)
    [11] 张禹, 杨忠明, 刘兆军, 等. 大口径多光谱通道波前测量系统设计[J]. 红外与激光工程,2020,49(8):20190559. doi: 10.3788/IRLA20190559

    ZHANG Y, YANG ZH M, LIU ZH J, et al. Design of large aperture multi-spectra channel wavefront measurement system[J]. Infrared and Laser Engineering, 2020, 49(8): 20190559. (in Chinese) doi: 10.3788/IRLA20190559
    [12] 张禹. 共轴式大口径多光谱通道波前测量系统的研究[D]. 济南: 山东大学, 2020: 10-21, 41-43.

    ZHANG Y. Research on coaxial large aperture multi-spectra channel wavefront measurement system[D]. Ji’nan: Shandong University, 2020: 10-21, 41-43. (in Chinese)
    [13] FOURMAUX S, PAYEUR S, ALEXANDROV A, et al. Laser beam wavefront correction for ultra high intensities with the 200 TW laser system at the advanced laser light source[J]. Optics Express, 2008, 16(16): 11987-11994. doi: 10.1364/OE.16.011987
    [14] LU H H, LIN CH Y, LU T C, et al. 150 m/280 Gbps WDM/SDM FSO link based on OEO-based BLS and afocal telescopes[J]. Optics Letters, 2016, 41(12): 2835-2838. doi: 10.1364/OL.41.002835
    [15] 郁道银, 谈恒英. 工程光学[M]. 3版. 北京: 机械工业出版社, 2011.

    YU D Y, TAN H Y. Engineering Optics[M]. 3rd ed. Beijing: China Machine Press, 2011. (in Chinese)
    [16] 傅瑞斯. 摄远物镜初步设计的一种方法[J]. 云光技术,2002,34(2):21-24.

    FU R S. A method for primary design of telephoto objective[J]. Yunguang Technology, 2002, 34(2): 21-24. (in Chinese)
    [17] CHEN ZH ZH, XU Y T, GUO Y D, et al. 8.2 kW high beam quality quasi-continuous-wave face-pumped Nd: YAG slab amplifier[J]. Applied Optics, 2015, 54(16): 5011-5015. doi: 10.1364/AO.54.005011
    [18] REDMOND S, MCNAUGHT S, ZAMEL J, et al. . 15 kW near-diffraction-limited single-frequency Nd: YAG laser[C]. 2007 Conference on Lasers and Electro-Optics (CLEO), IEEE, 2005: 1-2.
    [19] 林星辰, 朱洪波, 王彪, 等. 均匀光强分布的5 kW半导体激光硬化光源研制[J]. 光学 精密工程,2017,25(5):1178-1184. doi: 10.3788/OPE.20172505.1178

    LIN X CH, ZHU H B, WANG B, et al. Development of 5 kW diode laser hardening source with homogenized intensity distribution[J]. Optics and Precision Engineering, 2017, 25(5): 1178-1184. (in Chinese) doi: 10.3788/OPE.20172505.1178
  • 加载中
图(18) / 表(8)
计量
  • 文章访问数:  925
  • HTML全文浏览量:  499
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-26
  • 修回日期:  2021-07-26
  • 网络出版日期:  2021-10-22
  • 刊出日期:  2022-03-21

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!