留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近1 μm波段可调谐光纤光源的研究进展

党文佳 高奇 李哲 李刚

党文佳, 高奇, 李哲, 李刚. 近1 μm波段可调谐光纤光源的研究进展[J]. 中国光学(中英文), 2021, 14(5): 1120-1132. doi: 10.37188/CO.2021-0125
引用本文: 党文佳, 高奇, 李哲, 李刚. 近1 μm波段可调谐光纤光源的研究进展[J]. 中国光学(中英文), 2021, 14(5): 1120-1132. doi: 10.37188/CO.2021-0125
DANG Wen-jia, GAO Qi, LI Zhe, LI Gang. Research progress of tunable fiber light sources with wavelength near 1 μm[J]. Chinese Optics, 2021, 14(5): 1120-1132. doi: 10.37188/CO.2021-0125
Citation: DANG Wen-jia, GAO Qi, LI Zhe, LI Gang. Research progress of tunable fiber light sources with wavelength near 1 μm[J]. Chinese Optics, 2021, 14(5): 1120-1132. doi: 10.37188/CO.2021-0125

近1 μm波段可调谐光纤光源的研究进展

doi: 10.37188/CO.2021-0125
基金项目: 国家重点研发计划项目(No. 2017YFB1104400)
详细信息
    作者简介:

    党文佳(1983—),女,陕西西安人,博士,讲师,2015年于西安电子科技大学获得工学博士学位,主要从事光外差探测、光纤激光器及光电子技术等方面的研究。E-mail:wenjia_dang@126.com

    高 奇(1988—),男,陕西渭南人,硕士,助理研究员,2014年于西安电子科技大学获得硕士学位,主要从事大功率光纤激光器、窄线宽光纤激光器等方面的研究。E-mail:gaoqi@opt.ac.cn

    李 哲(1989—),男,山东菏泽人,硕士,助理研究员,2015年于西安电子科技大学获得硕士学位,主要从事光纤激光器、超荧光光纤光源、随机光纤激光器等新型光纤光源等方面的研究。E-mail:lizhe@opt.ac.cn

    李 刚(1985—),男,陕西兴平人,硕士,助理研究员,2013年于中国科学院大学获得硕士学位,主要从事大功率光纤激光器、非线性光纤光学等方面的研究。E-mail:ligang85@opt.ac.cn

  • 中图分类号: TN248

Research progress of tunable fiber light sources with wavelength near 1 μm

Funds: Supported by National Key R& D Program of China (No. 2017YFB1104400).
More Information
  • 摘要: 近1 μm波段的可调谐光纤光源在光纤传感、激光冷却、光化学、光谱学以及医疗等领域具有广泛应用,近年来成为光纤光源领域的一个研究热点。本文首先系统回顾了能够实现波长调谐的4类光纤光源的发展历程,然后分析了它们存在的问题及可能的解决思路,最后对近1 μm波段可调谐光纤光源进行了总结和展望。

     

  • 图 1  (a)可调谐光纤激光器的结构图;(b)不同波长的最大输出功率[11]

    Figure 1.  (a) Experimental setup of the tunable fiber laser; (b) maximum output power at different wavelengths[11]

    图 2  (a)可调谐光纤激光系统结构示意图;(b)不同波长的输出功率[14]

    Figure 2.  (a) Structural diagram of the tunable fiber laser; (b) output powers at different wavelengths[14]

    图 3  (a)可调谐光纤激光器的结构图;(b)主放大器的输出功率;(c)主放大器的输出光谱[23]

    Figure 3.  (a) Structural diagram of the tunable fiber laser; (b) output power in the main amplifier; (c) spectra of the lasers from the main amplifier[23]

    图 4  (a)可调谐泵浦源的输出光谱;(b)可调谐拉曼光输出光谱[37]

    Figure 4.  (a) Output spectra of the tunable pump source; (b) output spectra of the tunable Raman laser[37]

    图 5  (a)可调谐随机光纤激光器结构图;(b)1~1.9 μm的输出光谱[44]

    Figure 5.  The configuration of the tunable fiber laser; (b) output spectra plotted from 1 to 1.9 μm[44]

    图 6  (a)系统结构图;(b)不同波长的输出功率及效率;(c)最大功率时的输出光谱[56]

    Figure 6.  (a) Experimental setup; (b) output power and slope efficiency at different wavelengths; (c) output spectra at the maximum output power[56]

    表  1  可调谐掺镱光纤激光器的研究进展

    Table  1.   Research progress of tunable ytterbium-doped fiber lasers

    年份研究单位系统结构调谐范围/nm最大功率线宽
    2001法国鲁昂大学基于TBPF的全光纤结构环形腔1040~1100800 mW~0.1 nm
    2002德国汉诺威激光中心基于HDG的空间结构环形腔1032~112410 W<2.5 GHz
    2004南开大学基于可调FBG的线形腔1046.6~1062.2117 mW<0.1 nm
    2005中国科学技术大学DBR激光器1036.1~1056.54 mW<8 MHz
    2005墨西哥光学研究中心基于多模干涉效应的线形腔1088~1097500 mW0.5 nm
    2007德国汉诺威激光中心基于Littman-Littrow结构的环形腔1017~104331 mW5 MHz
    2007南开大学基于闪耀光栅的线形腔1042.1~10932.21 W<0.08 nm
    2007瑞典皇家理工学院基于体布拉格光栅的线形腔1022~10554.3 W5 GHz
    2007德国汉诺威激光中心线形腔、MOPA结构1040~1085133 W——
    2008厦门大学基于Littman-Littrow结构的线形腔1046~1121>20 W0.5 nm
    2011清华大学被动多环形腔结构1020~1080100 mW单纵模
    2011英国布里斯托大学基于AOTF的空间结构环形腔1035~110510 W——
    2013法国波尔多大学基于AOTF的空间结构环形腔976~112041 W0.1~1 nm
    2013瑞典皇家理工学院基于布拉格光栅的线形腔1064~1073>100 W13 GHz
    2014中科院上光所基于TBPF的全光纤环形腔1010~109039.9 W——
    2016美国IPG公司MOPA结构1030~1070>1.5 kW——
    2017国防科技大学MOPA结构1065~1090>1 kW0.12 nm
    2019西北大学复合腔结构1030~109018.5 mW8.7 kHz
    2019印度科学研究所环形腔、MOPA结构1050~1100130 W0.4~1 nm
    2020清华大学环形腔、MOPA结构、同带泵浦1060~1090>1 kW0.1 nm
    下载: 导出CSV

    表  2  可调谐拉曼光纤激光器的研究进展

    Table  2.   Research progress of tunable Raman fiber lasers

    年份研究单位系统结构调谐范围/nm最大功率
    1977美国贝尔实验室基于衍射光栅的TRFL一阶1085~1130
    二阶1150~1175
    ——
    2005德国汉堡-哈尔堡工业大学Sagnac-loop结构的全光纤级联TRFL1110~1230700 mW
    2007俄罗斯科学院基于可调谐泵浦源、可调谐FBG的TRFL1250~13003.2 W
    2008加拿大拉瓦尔大学基于可调谐FBG的TRFL1075~11355 W
    2010法国里尔大学基于可调谐泵浦源的TRFL1240~12892.5 W
    2012德国弗劳恩霍夫应用光学与精密研究所MOPA结构的TRFL1118~1130208 W
    2018国防科技大学基于可调谐泵浦源的TRFL1112~1139.6125.3 W
    下载: 导出CSV

    表  3  可调谐随机光纤激光器的研究进展

    Table  3.   Research progress of tunable random fiber lasers

    年份研究单位系统结构调谐范围/nm最大功率
    2015国防科技大学基于手动调节的TBPF的可调谐RFL1040~1090——
    2016上海光学精密机械研究所基于可调谐泵浦源与高阶拉曼激射的可调谐RFL1070~13701.8 W
    2017上海光学精密机械研究所基于可调谐泵浦源与高阶拉曼激射的可调谐RFL1000~1940——
    2018国防科技大学基于TBPF的可调谐RFL1095~111523 W
    2018国防科技大学基于可调谐泵浦源与半开腔结构的可调谐RFL1113.76~1137.44>100 W
    2019印度科学研究所基于可变截止短通滤波反馈结构的可调谐RFL1118~157533 W
    下载: 导出CSV

    表  4  可调谐超荧光光纤光源的研究进展

    Table  4.   Research progress of tunable superfluorescent fiber sources

    年份研究单位系统结构调谐范围/nm最大功率
    2009英国南安普顿大学基于衍射光栅的空间结构可调谐SFS1034~1084135 mW
    2018西安光学精密机械研究所基于TBPF的可调谐SFS1045~108030 W
    2020西安光学精密机械研究所基于衍射光栅的空间结构可调谐SFS1052.4~1072.8>230 W
    2020西安光学精密机械研究所基于衍射光栅的空间结构可调谐SFS1035~1055>300 W
    2020西安光学精密机械研究所基于TBPF的可调谐SFS1045~1085~1000 W
    下载: 导出CSV
  • [1] NILSSON J, CLARKSON W A, SELVAS R, et al. High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers[J]. Optical Fiber Technology, 2004, 10(1): 5-30. doi: 10.1016/j.yofte.2003.07.001
    [2] KOESTER C J, SNITZER E. Amplification in a fiber laser[J]. Applied Optics, 1964, 3(10): 1182-1186. doi: 10.1364/AO.3.001182
    [3] JAUREGUI C, LIMPERT J, TÜNNERMANN A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867. doi: 10.1038/nphoton.2013.273
    [4] 党文佳, 李哲, 李玉婷, 等. 高功率连续波掺镱光纤激光器研究进展[J]. 中国光学,2020,13(4):676-694. doi: 10.37188/CO.2019-0208

    DANG W J, LI ZH, LI Y T, et al. Recent advances in high-power continuous-wave ytterbium-doped fiber lasers[J]. Chinese Optics, 2020, 13(4): 676-694. (in Chinese) doi: 10.37188/CO.2019-0208
    [5] ZERVAS M N. High power ytterbium-doped fiber lasers—fundamentals and applications[J]. International Journal of Modern Physics B, 2014, 28(12): 1442009. doi: 10.1142/S0217979214420090
    [6] TER-MIKIRTYCHEV V. Fundamentals of Fiber Lasers and Fiber Amplifiers[M]. New York: Springer, 2014.
    [7] 韩辉云. 可调谐掺镱光纤激光器理论和实验研究[D]. 石家庄: 河北师范大学, 2019

    HAN H Y. Theoretical and experimental study on tunable ytterbium-doped fiber laser[D]. Shijiazhuang: Hebei Normal University, 2019. (in Chinese)
    [8] HIDEUR A, CHARTIER T, Ö ZKUL C, et al. All-fiber tunable ytterbium-doped double-clad fiber ring laser[J]. Optics Letters, 2001, 26(14): 1054-1056. doi: 10.1364/OL.26.001054
    [9] AUERBACH M, ADEL P, WANDT D, et al. 10 W widely tunable narrow linewidth double-clad fiber ring laser[J]. Optics Express, 2002, 10(2): 139-144. doi: 10.1364/OE.10.000139
    [10] SILVA A, BOLLER K J, LINDSAY I D. Wavelength-swept Yb-fiber master-oscillator-power-amplifier with 70 nm rapid tuning range[J]. Optics Express, 2011, 19(11): 10511-10517. doi: 10.1364/OE.19.010511
    [11] ROYON R, LHERMITE J, SARGER L, et al. High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm[J]. Optics Express, 2013, 21(11): 13818-13823. doi: 10.1364/OE.21.013818
    [12] HU J M, ZHANG L, FENG Y. Widely tunable Yb-doped all-fiber laser from 1.0 to 1.1 μm[C]. Advanced Solid State Lasers 2014, Optical Society of America, 2014: AM5A.22.
    [13] BALASWAMY V, APARANJI S, CHAYRAN G, et al. High-power, independently wavelength, power, and linewidth tunable ytterbium fiber laser[J]. IEEE Photonics Technology Letters, 2019, 31(8): 583-586. doi: 10.1109/LPT.2019.2901504
    [14] TIAN J D, XIAO Q R, LI D, et al. Tandem-pumped high-power narrow-linewidth fiber laser tunable from 1060–1090 nm[J]. Journal of Lightwave Technology, 2020, 38(6): 1461-1467. doi: 10.1109/JLT.2019.2954536
    [15] FU SH G, FAN W D, ZHANG Q, et al. Tunable Yb-doped double-clad fibre laser based on fibre Bragg grating with narrow linewidth[J]. Chinese Physics Letters, 2004, 21(7): 1279-1281. doi: 10.1088/0256-307X/21/7/026
    [16] SELVAS R, TORRES-GOMEZ I, MARTINEZ-RIOS A, et al. Wavelength tuning of fiber lasers using multimode interference effects[J]. Optics Express, 2005, 13(23): 9439-9445. doi: 10.1364/OPEX.13.009439
    [17] 刘胜利, 李乙钢, 高艳丽, 等. 高功率宽调谐范围掺Yb3+光子晶体光纤激光器 [J]. 光学学报,2007,27(9):1663-1667. doi: 10.3321/j.issn:0253-2239.2007.09.024

    LIU SH L, LI Y G, GAO Y L, et al. High-power widely tunable Yb-doped photonic crystal fiber laser[J]. Acta Optica Sinica, 2007, 27(9): 1663-1667. (in Chinese) doi: 10.3321/j.issn:0253-2239.2007.09.024
    [18] HILDEBRANDT M, FREDE M, KRACHT D. Narrow-linewidth ytterbium-doped fiber amplifier system with 45 nm tuning range and 133 W of output power[J]. Optics Letters, 2007, 32(16): 2345-2347. doi: 10.1364/OL.32.002345
    [19] JELGER P, LAURELL F. Efficient skew-angle cladding-pumped tunable narrow-linewidth Yb-doped fiber laser[J]. Optics Letters, 2007, 32(24): 3501-3503. doi: 10.1364/OL.32.003501
    [20] ZEIL P, PASISKEVICIUS V, LAURELL F. Efficient spectral control and tuning of a high-power narrow-linewidth Yb-doped fiber laser using a transversely chirped volume Bragg grating[J]. Optics Express, 2013, 21(4): 4027-4035. doi: 10.1364/OE.21.004027
    [21] FAN Y Y, YE CH CH, WU C Y, et al. High-power narrow-linewidth wavelength-tunable Yb3+-doped double-clad fiber lasers[J]. Proceedings of SPIE, 2008, 7134: 71342H. doi: 10.1117/12.803303
    [22] YAGODKIN R, PLATONOV N, YUSIM A, et al. > 1.5kW narrow linewidth CW diffraction-limited fiber amplifier with 40nm bandwidth[J]. Proceedings of SPIE, 2016, 9728: 972807.
    [23] LIU Y K, SU R T, MA P F, et al. > 1 kW all-fiberized narrow-linewidth polarization-maintained fiber amplifiers with wavelength spanning from 1065 to 1090 nm[J]. Applied Optics, 2017, 56(14): 4213-4218. doi: 10.1364/AO.56.004213
    [24] 王安廷, 李锋, 黄晶, 等. 可调谐单频掺镱光纤DBR激光器[J]. 量子电子学报,2005,22(4):607-611. doi: 10.3969/j.issn.1007-5461.2005.04.024

    WANG A T, LI F, HUANG J, et al. Tunable single-frequency ytterbium-doped fiber BDR laser[J]. Chinese Journal of Quantum Electronics, 2005, 22(4): 607-611. (in Chinese) doi: 10.3969/j.issn.1007-5461.2005.04.024
    [25] ENGELBRECHT M, RUEHL A, WANDT D, et al. Single-frequency ytterbium-doped fiber laser with 26 nm tuning range[J]. Optics Express, 2007, 15(8): 4617-4622. doi: 10.1364/OE.15.004617
    [26] YIN F F, YANG S G, CHEN H W, et al. 60-nm-wide tunable single-longitudinal-mode ytterbium fiber laser with passive multiple-ring cavity[J]. IEEE Photonics Technology Letters, 2011, 23(22): 1658-1660. doi: 10.1109/LPT.2011.2166112
    [27] WANG K L, LU B L, QI X Y, et al. Wavelength-tunable single-frequency ytterbium-doped fiber laser based on a double-circulator interferometer[J]. Laser Physics Letters, 2019, 16(1): 015104. doi: 10.1088/1612-202X/aaf175
    [28] 马选选, 陆宝乐, 王凯乐, 等. 宽带可调谐单频窄线宽光纤激光器[J]. 光学学报,2019,39(1):0114001. doi: 10.3788/AOS201939.0114001

    MA X X, LU B L, WANG K L, et al. Tunable broadband single-frequency narrow-linewidth fiber laser[J]. Acta Optica Sinica, 2019, 39(1): 0114001. (in Chinese) doi: 10.3788/AOS201939.0114001
    [29] 冯衍, 姜华卫, 张磊. 高功率拉曼光纤激光器技术研究进展[J]. 中国激光,2017,44(2):0201005. doi: 10.3788/CJL201744.0201005

    FENG Y, JIANG H W, ZHANG L. Advances in high power Raman fiber laser technology[J]. Chinese Journal of Lasers, 2017, 44(2): 0201005. (in Chinese) doi: 10.3788/CJL201744.0201005
    [30] LIN C, STOLEN R H, FRENCH W G, et al. A cw tunable near-infrared (1.085–1.175μm) Raman oscillator[J]. Optics Letters, 1977, 1(3): 96-97. doi: 10.1364/OL.1.000096
    [31] CIERULLIES S, LIM E L, BRINKMEYER E. Ad-fiber widely tunable Raman laser in a combined linear and sagnac-loop configuration[C]. OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005, IEEE, 2005: 31-33.
    [32] BABIN S A, KABLUKOV S I, VLASOV A A. Tunable fiber Bragg gratings for application in tunable fiber lasers[J]. Laser Physics, 2007, 17(11): 1323-1326. doi: 10.1134/S1054660X07110096
    [33] BELANGER E, BERNIER M, FAUCHER D, et al. High-power and widely tunable all-fiber Raman laser[J]. Journal of Lightwave Technology, 2008, 26(12): 1696-1701. doi: 10.1109/JLT.2008.922337
    [34] ANQUEZ F, COURTADE E, SIVÉRY A, et al. A high-power tunable Raman fiber ring laser for the investigation of singlet oxygen production from direct laser excitation around 1270 nm[J]. Optics Express, 2010, 18(22): 22928-22936. doi: 10.1364/OE.18.022928
    [35] REKAS M, SCHMIDT O, ZIMER H, et al. Over 200 W average power tunable Raman amplifier based on fused silica step index fiber[J]. Applied Physics B, 2012, 107(3): 711-716. doi: 10.1007/s00340-012-5052-3
    [36] AGRAWAL G P. Nonlinear fiber optics: its history and recent progress [Invited][J]. Journal of the Optical Society of America B, 2011, 28(12): A1-A10. doi: 10.1364/JOSAB.28.0000A1
    [37] SONG J X, WU H SH, XU J M, et al. High-power linearly-polarized tunable Raman fiber laser[J]. Chinese Physics B, 2018, 27(9): 094209. doi: 10.1088/1674-1056/27/9/094209
    [38] TURITSYN S K, BABIN S A, CHURKIN D V, et al. Random distributed feedback fibre lasers[J]. Physics Reports, 2014, 542(2): 133-193. doi: 10.1016/j.physrep.2014.02.011
    [39] 党文佳, 李哲, 卢娜, 等. 0.9~1.0 μm近红外连续光纤激光器的研究进展[J]. 中国光学,2021,14(2):264-274. doi: 10.37188/CO.2020-0193

    DANG W J, LI ZH, LU N, et al. Research progress of 0.9~1.0 μm near-infrared continuous-wave fiber lasers[J]. Chinese Optics, 2021, 14(2): 264-274. (in Chinese) doi: 10.37188/CO.2020-0193
    [40] DU X Y, ZHANG H W, WANG X L, et al. Tunable random distributed feedback fiber laser operating at 1 μm[J]. Applied Optics, 2015, 54(4): 908-911. doi: 10.1364/AO.54.000908
    [41] YE J, XU J M, SONG J X, et al. Flexible spectral manipulation property of a high power linearly polarized random fiber laser[J]. Scientific Reports, 2018, 8(1): 2173. doi: 10.1038/s41598-018-20664-y
    [42] WU H SH, SONG J X, YE J, et al. Hundred-watt-level linearly polarized tunable Raman random fiber laser[J]. Chinese Optics Letters, 2018, 16(6): 061402. doi: 10.3788/COL201816.061402
    [43] ZHANG L, JIANG H W, YANG X Z, et al. Ultra-wide wavelength tuning of a cascaded Raman random fiber laser[J]. Optics Letters, 2016, 41(2): 215-218. doi: 10.1364/OL.41.000215
    [44] ZHANG L, JIANG H W, YANG X Z, et al. Nearly-octave wavelength tuning of a continuous wave fiber laser[J]. Scientific Reports, 2017, 7: 42611. doi: 10.1038/srep42611
    [45] ZHANG L, DONG J Y, FENG Y. High-power and high-order random Raman fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1400106.
    [46] BALASWAMY V, APARANJI S, ARUN S, et al.. High power, ultra-widely tunable wavelength, cascaded Raman fiber laser[C]. CLEO: Science and Innovations 2018, Optical Society of America, 2018: SM1K.4.
    [47] BALASWAMY V, RAMACHANDRAN S, SUPRADEEPA V R. High-power, cascaded random Raman fiber laser with near complete conversion over wide wavelength and power tuning[J]. Optics Express, 2019, 27(7): 9725-9732. doi: 10.1364/OE.27.009725
    [48] 李乙钢, 刘伟伟, 傅成鹏, 等. 大功率掺Yb双包层光纤宽带超荧光光源[J]. 光学学报,2001,21(10):1171-1173. doi: 10.3321/j.issn:0253-2239.2001.10.005

    LI Y G, LIU W W, FU CH P, et al. High-power Yb-doped double-cladding fiber broadband superfluorescent source[J]. Acta Optica Sinica, 2001, 21(10): 1171-1173. (in Chinese) doi: 10.3321/j.issn:0253-2239.2001.10.005
    [49] WANG P, CLARKSON W A. Tunable Yb-doped fibre amplified spontaneous emission source[C]. Conference on Lasers and Electro-Optics 2009, Optical Society of America, 2009: CFM6.
    [50] YE J, XU J M, ZHANG Y, et al. Spectrum-manipulable hundred-watt-level high-power superfluorescent fiber source[J]. Journal of Lightwave Technology, 2019, 37(13): 3113-3118. doi: 10.1109/JLT.2019.2911007
    [51] 吴鹏. 高功率掺镱光纤超荧光光源技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2019

    WU P. Study on the technology of high-power Yb-doped superfluorescent fiber source[D]. Xi’an: University of Chinese Academy of Sciences (Xi’an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences), 2019. (in Chinese)
    [52] WU P, ZHAO B Y, ZHAO W, et al. Optimization investigation for high-power 1034 nm all-fiber narrowband Yb-doped superfluorescent source[J]. Optics Communications, 2019, 445: 187-192. doi: 10.1016/j.optcom.2019.04.033
    [53] WU P, ZHAO B Y, ZHAO W, et al. 30 W all-fiber tunable, narrowband Yb-doped superfluorescent fiber source[J]. Infrared Physics &Technology, 2018, 92: 363-366.
    [54] GAO W, FAN W H, ZHANG Y P, et al. High-power tunable sub-nm narrowband near-diffraction-limited superfluorescent fiber source based on a single-lens spectral filter[J]. Optics Communications, 2020, 463: 125359. doi: 10.1016/j.optcom.2020.125359
    [55] JU P, FAN W H, ZHAO B Y, et al. High power, tunable, ultra-narrowband Yb-doped superfluorescent fiber source operating at wavelength less than 1055 nm with 20 nm tuning range[J]. Infrared Physics &Technology, 2020, 111: 103530.
    [56] LI ZH, LI G, GAO Q, et al. Kilowatt-level tunable all-fiber narrowband superfluorescent fiber source with 40 nm tuning range[J]. Optics Express, 2020, 28(7): 10378-10385. doi: 10.1364/OE.387405
    [57] ZHENG Y, YANG Y F, WANG J H, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 2016, 24(11): 12063-12071. doi: 10.1364/OE.24.012063
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  1559
  • HTML全文浏览量:  591
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-10
  • 修回日期:  2021-07-13
  • 网络出版日期:  2021-08-19
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!