留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铌酸锂薄膜调制器的研究进展

刘海锋 郭宏杰 谭满清 李智勇

刘海锋, 郭宏杰, 谭满清, 李智勇. 铌酸锂薄膜调制器的研究进展[J]. 中国光学(中英文), 2022, 15(1): 1-13. doi: 10.37188/CO.2021-0115
引用本文: 刘海锋, 郭宏杰, 谭满清, 李智勇. 铌酸锂薄膜调制器的研究进展[J]. 中国光学(中英文), 2022, 15(1): 1-13. doi: 10.37188/CO.2021-0115
LIU Hai-feng, GUO Hong-jie, TAN Man-qing, LI Zhi-yong. Research progress of lithium niobate thin-film modulators[J]. Chinese Optics, 2022, 15(1): 1-13. doi: 10.37188/CO.2021-0115
Citation: LIU Hai-feng, GUO Hong-jie, TAN Man-qing, LI Zhi-yong. Research progress of lithium niobate thin-film modulators[J]. Chinese Optics, 2022, 15(1): 1-13. doi: 10.37188/CO.2021-0115

铌酸锂薄膜调制器的研究进展

doi: 10.37188/CO.2021-0115
基金项目: 国家重点研发计划 (No. 2019YFB2203802);国家自然科学基金资助项目 (No. 61934007)
详细信息
    作者简介:

    刘海锋(1983—),男,山东烟台人,博士,副研究员,2007年于北京信息科技大学获得学士学位,2010年于北京航空航天大学光学工程专业获得硕士学位,2020年于中国科学院大学物理电子学专业获得博士学位,主要从事半导体传感模块和光子集成方面研究,E-mail:liuhaifeng@semi.ac.cn

    郭宏杰(1997—),男,山西吕梁人,硕士研究生,2019年于太原理工大学获得学士学位,主要从事铌酸锂相位调制器、光纤传感等方面的研究。E-mail:guohongjie@semi.ac.cn

    谭满清(1967—),男,湖南衡山人,博士,教授,博士生导师。于北京理工大学获得博士学位,1996年在半导体研究所博士后流动站从事研究工作。1998年以后,在半导体研究所工作。目前主要从事半导体光电器件研制及器件物理的研究。E-mail: mqtan@semi.ac.cn

  • 中图分类号: TN29

Research progress of lithium niobate thin-film modulators

Funds: Supported by National Key Research and Development Program of China (No. 2019YFB2203802); National Natural Science Foundation of China (No. 61934007)
More Information
  • 摘要: 铌酸锂薄膜调制器具有体积小、带宽高、半波电压低的优点,在光纤通讯和光纤传感领域具有重要应用价值,是近年来的研究热点。本文梳理了铌酸锂薄膜调制器的波导结构、耦合结构、电极结构的研究进展,总结了LN薄膜波导的制备工艺,并深入分析了不同结构调制器的性能。基于SOI和LNOI结构,薄膜调制器实现了VπL<2 V∙cm,双锥形耦合方案实现了耦合损耗<0.5 dB/facet,行波电极结构实现了调制带宽>100 GHz。铌酸锂薄膜调制器的性能在大多数方面优于目前商用铌酸锂调制器,随着波导工艺进一步提升,将成为铌酸锂调制器的热门方案。最后对铌酸锂薄膜调制器的发展趋势和应用前景进行了展望。

     

  • 图 1  (a)~(c)LNOI结构:(a)置换波导;(b)加载波导;(c)脊形波导。(d)SOI结构

    Figure 1.  (a)~(c) LNOI structure: (a) diffused waveguide; (b) loaded waveguide; (c) ridge waveguide. (d) SOI structure

    图 2  (a) MZI结构示意图;(b) MI结构示意图

    Figure 2.  Schematic diagrams of (a) MZI structure and (b) MI structure

    图 3  两种谐振腔输出端口光强分布图[16]。(a)微环结构;(b)光子晶体结构。蓝线为施加电场后波导的光学特性变化曲线

    Figure 3.  Light intensity distribution diagram of the output port of the resonant cavity structure waveguide[16]. (a) Microring structure; (b) photonic crystal structure. The blue line is the optical characteristic change curve of the waveguide after an electric field is applied

    图 4  (a)锥形耦合模型[19];(b)反锥形耦合模型[19];(c)光栅耦合模型[19];(d)消逝耦合模型[19]

    Figure 4.  (a) Tapered coupling model[19]; (b) inverse tapered coupling model[19]; (c) grating coupling model[19]; (d) evanescent coupling model[19]

    图 5  光纤与调制器集成方案[29]。(a)调制器结构;(b)光在光纤中传播时的波导结构;(c)光在波导中传播时的波导结构

    Figure 5.  Optical fiber and modulator integration scheme[29]. (a) Modulator structure; (b) waveguide structure when light propagates in an optical fiber; (c) waveguide structure when light propagates in a waveguide

    图 6  铌酸锂调制器中的电极基础结构。 (a)电场方向平行波导芯层;(b)电场方向垂直波导芯层

    Figure 6.  Electrode basic structure of LN modulators. (a) The electric field direction is parallel to the waveguide core; (b) the electric field direction is perpendicular to the waveguide core

    图 7  (a)集总电极结构;(b)行波电极结构

    Figure 7.  (a) Lumped electrode structure; (b) traveling wave electrode structure

    图 8  (a)~(d)CMP工艺流程图和(e)CMP系统结构图[58]

    Figure 8.  (a)~(d) CMP process flow chart and (e) CMP system structure diagram[58]

    图 9  (a) FIBm前及(b) FIBm后波导图像[59]

    Figure 9.  Waveguide image (a) before and (b) after FIBm[59]

    图 10  金刚石切割制造波导过程[61]

    Figure 10.  Diamond cutting process for manufacturing waveguides[61]

    图 11  调制器输出端口光场图。(a) PM;(b) MZM;(c) MIM;(d) MRM;(e) PHCM

    Figure 11.  The light field change diagram of the output port of the modulator. (a) PM; (b) MZM; (c) MIM; (d) MRM; (e) PHCM

    表  1  不同耦合方案总结

    Table  1.   Summary of different coupling schemes

    耦合方案TE损耗/
    (dB·facet−1)
    LN切向特点
    边缘耦合:锥形[20]1.5X工艺难度大,损耗低
    边缘耦合:反锥形[25]0.5X工艺难度大,损耗低
    光栅耦合[26]3.5Z工艺成熟,但损耗高
    消逝耦合[28]1.32X工艺难度较大,损耗低
    光纤集成[29]<1.5X工艺难度较大,损耗较低
    下载: 导出CSV

    表  2  不同刻蚀工艺对比

    Table  2.   Comparison of different etching processes

    刻蚀工艺侧壁倾斜度损耗/(dB·cm−1)脊形宽度/μm特点
    湿法刻蚀[54]NAN$0.3\left({\rm{TE}}\right)$
    $0.9\left({\rm{TM}}\right)$
    6.5波导尺寸大
    干法刻蚀[57]NAN$0.2\left({\rm{TE}}\right)$0.8损耗小,波导尺寸小
    化学机械抛光(CMP)[53, 58]9~51°$0.027\left({\rm{TE}}\right)$3损耗小,波导尺寸大
    金刚石切割[61]>65°$1.2\left({\rm{TE}}\right)$
    $2.8\left({\rm{TM}}\right)$
    2.1损耗较大,
    波导容易断裂
    下载: 导出CSV

    表  3  不同加载材料损耗比较

    Table  3.   Comparison of loss of different loaded materials

    加载材料损耗(TE)/(dB·cm−1)
    ${\rm{Si}}_{3}{{\rm{N}}}_{4}$[62]$2.25$
    ${\rm{Ti}}{{\rm{O}}}_{2}$[69]$5.8$
    $ {\mathrm{T}\mathrm{a}}_{2}{\mathrm{O}}_{5} $[67]$5$
    硫化物玻璃材料[68]$1.2$
    下载: 导出CSV

    表  4  ${V}_{{\text{π}} }{L}$总结

    Table  4.   ${V}_{{\text{π}} }{L}$ summary

    论文编号调制器薄膜
    结构分类
    调制器光学
    结构分类
    ${ V }_{ {\text{π} } }{L}/({\rm{V} }\cdot{\rm{ cm} }$)年份
    [70]Rib Etch on LNOIMZM1.752021
    [25]Rib Etch on LNOIMZM2.362021
    [62]Rib load on LNOIMZM2.1122020
    [71]Rib load on LNOIMZM3.122020
    [72]Rib Etch on LNOIMZM2.47/2.3252020
    [73]Rib Etch on LNOIMZM2.22020
    [74]Rib Etch on LNOIMZM1.62019
    [75]TFLN on SOIMZM2.552019
    [13]TFLN on SOIMZM2.2252019
    [76]TFLN on SOIMIM1.22019
    [64]Rib load on LNOIMZM3.62019
    [64]Rib Etch on LNOIMZM4.92019
    [47]PE&APE on LNOIMZM10.22019
    [77]Rib Etch on LNOIMIM1.42019
    [12]TFLN on SOIMZM6.72018
    [49]Rib Etch on LNOIMZM1.82018
    [57]Rib Etch on LNOIMZM2.8/2.3/2.22018
    [78]PE&APE on LNOIPM6.52016
    下载: 导出CSV

    表  5  可调谐性总结

    Table  5.   Tunability summary

    论文编号调制器薄膜
    结构分类
    调制器光学
    结构分类
    可调谐性/(pm·V−1)年份
    [79]Rib Etch on LNOIPHCM162020
    [80]Rib Etch on LNOIMRM92020
    [65]Rib load on LNOIMRM2.92019
    [81]Rib Etch on LNOIMRM32019
    [49]Rib Etch on LNOIMRM2018
    下载: 导出CSV

    表  6  光学损耗总结

    Table  6.   Summary of optical loss

    论文编号调制器薄膜
    结构分类
    调制器光学
    结构分类
    光学损耗/dB年份
    [25]Rib Etch on LNOIMZM32021
    [62]Rib load on LNOIMZM12.42020
    [71]Rib load on LNOIMZM13.862020
    [79]Rib Etch on LNOIPHCM2.22020
    [72]Rib Etch on LNOIMZM9.7/10.42020
    [75]TFLN ON SOIMZM2.52019
    [13]TFLN ON SOIMZM<12019
    [76]TFLN ON SOIMIM3.32019
    [77]Rib Etch on LNOIMIM7.82019
    [82]Rib load on LNOIPM>8.42016
    下载: 导出CSV

    表  7  消光比总结

    Table  7.   Summary of OER

    论文编号调制器薄膜
    结构分类
    调制器光学
    结构分类
    消光比(dB)年份
    [62]Rib load on LNOIMZM302020
    [79]Rib Etch on LNOIPHCM11.52020
    [80]Rib Etch on LNOIMRM202020
    [76]TFLN ON SOIMIM6.62019
    [49]Rib Etch on LNOIMZM102018
    [57]Rib Etch on LNOIMZM302018
    下载: 导出CSV

    表  8  3 dB带宽总结

    Table  8.   Summary of 3 dB bandwidth

    论文编号调制器薄膜
    结构分类
    调制器光学
    结构分类
    3 dB带宽/GHz年份
    [70]Rib Etch on LNOIMZM402021
    [25]Rib Etch on LNOIMZM602021
    [71]Rib load on LNOIMZM292020
    [79]Rib Etch on LNOIPHCM17.52020
    [72]Rib Etch on LNOIMZM48/672020
    [80]Rib Etch on LNOIMRM282020
    [73]Rib Etch on LNOIMZM672020
    [75]TFLN ON SOIMZM>702019
    [13]TFLN ON SOIMZM1002019
    [76]TFLN ON SOIMIM17.52019
    [64]Rib load on LNOIMZM5~4202019
    [64]Rib Etch on LNOIMZM3~3402019
    [83]Rib Etch on LNOIPM302019
    [77]Rib Etch on LNOIMIM122019
    [12]TFLN ON SOIMZM1002018
    [49]Rib Etch on LNOIMRM302018
    [57]Rib Etch on LNOIMZM15~802018
    下载: 导出CSV

    表  9  调制速率总结

    Table  9.   Summary of modulation rate

    论文编号调制器薄膜
    结构分类
    调制器光学
    结构分类
    调制速率/(${\rm{Gbit}}{{\rm{s}}}^{-1}$)年份
    [71]Rib load on LNOIMZM29@NRZ2020
    [72]Rib Etch on LNOIMZM220@QPSK
    320@QAM
    2020
    [79]Rib Etch on LNOIPHCM11@NRZ2020
    [75]TFLN ON SOIMZM100@OOK
    112@PAM-4
    2019
    [76]TFLN ON SOIMIM40@OOK2019
    [77]Rib Etch on LNOIMIM35@NRZ2019
    [49]Rib Etch on LNOIMRM40@NRZ2018
    下载: 导出CSV
  • [1] WOOTEN E L, KISSA K M, YI-YAN A, et al. A review of lithium niobate modulators for fiber-optic communications systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(1): 69-82. doi: 10.1109/2944.826874
    [2] TENG M, HONARDOOST A, ALAHMADI Y, et al. Miniaturized silicon photonics devices for integrated optical signal processors[J]. Journal of Lightwave Technology, 2020, 38(1): 6-17. doi: 10.1109/JLT.2019.2943251
    [3] SUN CH, WADE M T, LEE Y, et al. Single-chip microprocessor that communicates directly using light[J]. Nature, 2015, 528(7583): 534-538. doi: 10.1038/nature16454
    [4] OGISO Y, OZAKI J, UEDA Y, et al. Over 67 GHz bandwidth and 1.5 V Vπ InP-based optical IQ modulator with n-i-p-n heterostructure[J]. Journal of Lightwave Technology, 2017, 35(8): 1450-1455. doi: 10.1109/JLT.2016.2639542
    [5] KOEBER S, PALMER R, LAUERMANN M, et al. Femtojoule electro-optic modulation using a silicon-organic hybrid device[J]. Light:Science &Applications, 2015, 4(2): e255.
    [6] HAFFNER C, CHELLADURAI D, FEDORYSHYN Y, et al. Low-loss plasmon-assisted electro-optic modulator[J]. Nature, 2018, 556(7702): 483-486. doi: 10.1038/s41586-018-0031-4
    [7] GUTIERREZ A M, GALAN J V, HERRERA J, et al. . High linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications[C]. Proceedings of the 9th International Conference on Group IV Photonics (GFP), IEEE, 2012: 57-59.
    [8] 陈柄言, 于永吉, 吴春婷, 等. 窄线宽1064 nm光纤激光泵浦高效率中红外3.8 μm MgO: PPLN光参量振荡器[J]. 中国光学,2021,14(2):361-367. doi: 10.37188/CO.2020-0169

    CHEN B Y, YU Y J, WU CH T, et al. High efficiency mid-infrared 3.8 μm MgO: PPLN optical parametric oscillator pumped by narrow linewidth 1064 nm fiber laser[J]. Chinese Optics, 2021, 14(2): 361-367. (in Chinese) doi: 10.37188/CO.2020-0169
    [9] Srico. Lithium niobate modulator[EB/OL]. [2021-08-31].https://www.srico.com/products/.
    [10] Optilab. Lithium niobate modulator[EB/OL]. [2021-08-31].https://www.optilab.com/optical-modulator.
    [11] EOspace. Lithium niobate modulator[EB/OL]. [2021-08-31].https://www.eospace.com/product-summary-modulator.
    [12] WEIGEL P O, ZHAO J, FANG K, et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth[J]. Optics Express, 2018, 26(18): 23728-23739. doi: 10.1364/OE.26.023728
    [13] WANG X X, WEIGEL P O, ZHAO J, et al. Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate[J]. APL Photonics, 2019, 4(9): 096101. doi: 10.1063/1.5115243
    [14] LI M X, LIANG H X, LUO R, et al. High‐Q 2D lithium niobate photonic crystal slab nanoresonators[J]. Laser &Photonics Reviews, 2019, 13(5): 1800228.
    [15] LI M X, LIANG H X, LUO R, et al. Photon-level tuning of photonic nanocavities[J]. Optica, 2019, 6(7): 860-863. doi: 10.1364/OPTICA.6.000860
    [16] QIAO Q F, XIA J, LEE C, et al. Applications of photonic crystal nanobeam cavities for sensing[J]. Micromachines, 2018, 9(11): 541. doi: 10.3390/mi9110541
    [17] 李天琦, 毛小洁, 雷健, 等. 固体激光器与光纤激光器对光子晶体光纤棒耦合的分析与对比[J]. 中国光学,2018,11(6):958-973. doi: 10.3788/co.20181106.0958

    LI T Q, MAO X J, LEI J, et al. Analysis and comparison of solid-state lasers and fiber lasers on the coupling of rod-type photonic crystal fiber[J]. Chinese Optics, 2018, 11(6): 958-973. (in Chinese) doi: 10.3788/co.20181106.0958
    [18] 史光辉. 半导体激光耦合新方法[J]. 中国光学,2013,6(3):343-352.

    SHI G H. Improved method for semiconductor laser coupling[J]. Chinese Optics, 2013, 6(3): 343-352. (in Chinese)
    [19] SON G, HAN S, PARK J, et al. High-efficiency broadband light coupling between optical fibers and photonic integrated circuits[J]. Nanophotonics, 2018, 7(12): 1845-1864. doi: 10.1515/nanoph-2018-0075
    [20] HONARDOOST A, GONZALEZ G F C, KHAN S, et al. Cascaded integration of optical waveguides with third-order nonlinearity with lithium niobate waveguides on silicon substrates[J]. IEEE Photonics Journal, 2018, 10(3): 4500909.
    [21] LI Y, LAN T, LI J, et al. High-efficiency edge-coupling based on lithium niobate on an insulator wire waveguide[J]. Applied Optics, 2020, 59(22): 6694-6701. doi: 10.1364/AO.395897
    [22] KRASNOKUTSKA I, TAMBASCO J L J, PERUZZO A. Nanostructuring of LNOI for efficient edge coupling[J]. Optics Express, 2019, 27(12): 16578-16585. doi: 10.1364/OE.27.016578
    [23] LIU D N, FENG L SH, JIA Y Z, et al. Heterogeneous integration of LN and Si3N4 waveguides using an optical interlayer coupler[J]. Optics Communications, 2019, 436: 1-6. doi: 10.1016/j.optcom.2018.11.058
    [24] HE L Y, ZHANG M, SHAMS-ANSARI A, et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits[J]. Optics Letters, 2019, 44(9): 2314-2317. doi: 10.1364/OL.44.002314
    [25] YING P, TAN H Y, ZHANG J W, et al. Low-loss edge-coupling thin-film lithium niobate modulator with an efficient phase shifter[J]. Optics Letters, 2021, 46(6): 1478-1481. doi: 10.1364/OL.418996
    [26] KRASNOKUTSKA I, CHAPMAN R J, TAMBASCO J L J, et al. High coupling efficiency grating couplers on lithium niobate on insulator[J]. Optics Express, 2019, 27(13): 17681-17685. doi: 10.1364/OE.27.017681
    [27] MAHMOUD M, CAI L T, BOTTENFIELD C, et al. Lithium niobate electro-optic racetrack modulator etched in Y-Cut LNOI platform[J]. IEEE Photonics Journal, 2018, 10(1): 6600410.
    [28] YAO N, ZHOU J X, GAO R H, et al. Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber[J]. Optics Express, 2020, 28(8): 12416-12423. doi: 10.1364/OE.391228
    [29] WANG M K, LI J H, CHEN K X, et al. Thin-film lithium niobate electro-optic modulator on a D-shaped fiber[J]. Optics Express, 2020, 28(15): 21464-21473. doi: 10.1364/OE.396613
    [30] ALFERNESS R C. Waveguide electrooptic modulators[J]. IEEE Transactions on Microwave Theory and Techniques, 1982, 30(8): 1121-1137. doi: 10.1109/TMTT.1982.1131213
    [31] BINH L N. Tilted traveling wave electrodes and impacts on high-speed operation of integrated electro-optic modulators: modeling and experimental demonstration[J]. Optical Engineering, 2009, 48(9): 097005. doi: 10.1117/1.3231504
    [32] YANG D C, CHEN Y K, XIANG M H, et al. Traveling wave electrode design for a LiNbO3 integrated optical switch[J]. Proceedings of SPIE, 2019, 11334: 113341B.
    [33] GEE A, JAAFAR A H, KEMP N T. Nanoscale junctions for single molecule electronics fabricated using bilayer nanoimprint lithography combined with feedback controlled electromigration[J]. Nanotechnology, 2020, 31(15): 155203. doi: 10.1088/1361-6528/ab6473
    [34] AIDIL S A, NUZAIHAN M N M, ARSHAD M K, et al. . Fabrication and characterization of poly-Si nanowire with Thin Film of Ni/Au contact pad using conventional photolithography[C]. Proceedings of 2019 IEEE International Conference on Sensors and Nanotechnology, IEEE, 2019: 29-32.
    [35] KUBOTA K, NODA J, MIKAMI O. Traveling wave optical modulator using a directional coupler LiNbO3waveguide[J]. IEEE Journal of Quantum Electronics, 1980, 16(7): 754-760. doi: 10.1109/JQE.1980.1070563
    [36] LEVY M, RADOJEVIC A M. Single-crystal lithium niobate films by crystal ion slicing[M]. ALEXE M, GÖSELE U. Wafer Bonding: Applications and Technology. Berlin, Heidelberg: Springer, 2004: 417-450.
    [37] RAO A, FATHPOUR S. Compact lithium niobate electrooptic modulators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(4): 3400114.
    [38] HU H, GUI L, RICKEN R, et al. Towards nonlinear photonic wires in lithium niobate[J]. Proceedings of SPIE, 2010, 7604: 76040R. doi: 10.1117/12.842674
    [39] POBERAJ G, KOECHLIN M, SULSER F, et al. Ion-sliced lithium niobate thin films for active photonic devices[J]. Optical Materials, 2009, 31(7): 1054-1058. doi: 10.1016/j.optmat.2007.12.019
    [40] TAKIGAWA R, ASANO T. Thin-film lithium niobate-on-insulator waveguides fabricated on silicon wafer by room-temperature bonding method with silicon nanoadhesive layer[J]. Optics Express, 2018, 26(19): 24413-24421. doi: 10.1364/OE.26.024413
    [41] HOWLADER M M R, SUGA T, KIM M J. Room temperature bonding of silicon and lithium niobate[J]. Applied Physics Letters, 2006, 89(3): 031914. doi: 10.1063/1.2229262
    [42] LEE Y S, KIM G D, KIM W J, et al. Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices[J]. Optics Letters, 2011, 36(7): 1119-1121. doi: 10.1364/OL.36.001119
    [43] ARIZMENDI L. Photonic applications of lithium niobate crystals[J]. Physica Status Solidi (A), 2004, 201(2): 253-283. doi: 10.1002/pssa.200303911
    [44] YU J, ZHANG CH X, LI CH SH, et al. Influence of polarization-dependent crosstalk on scale factor in the in-line Sagnac interferometer current sensor[J]. Optical Engineering, 2013, 52(11): 117101. doi: 10.1117/1.OE.52.11.117101
    [45] PAZ‐PUJALT G R, TUSCHEL D D, BRAUNSTEIN G, et al. Characterization of proton exchange lithium niobate waveguides[J]. Journal of Applied Physics, 1994, 76(7): 3981-3987. doi: 10.1063/1.358495
    [46] PALIWAL A, SHARMA A, GUO R Y, et al. Electro-optic (EO) effect in proton-exchanged lithium niobate: towards EO modulator[J]. Applied Physics B, 2019, 125(7): 115. doi: 10.1007/s00340-019-7227-7
    [47] HAN H P, XIANG B X, LIN T, et al. Design and optimization of proton exchanged integrated electro-optic modulators in X-Cut lithium niobate thin film[J]. Crystals, 2019, 9(11): 549. doi: 10.3390/cryst9110549
    [48] ULLIAC G, GUICHARDAZ B, RAUCH J Y, et al. Ultra-smooth LiNbO3 micro and nano structures for photonic applications[J]. Microelectronic Engineering, 2011, 88(8): 2417-2419. doi: 10.1016/j.mee.2011.02.024
    [49] WANG CH, ZHANG M, STERN B, et al. Nanophotonic lithium niobate electro-optic modulators[J]. Optics Express, 2018, 26(2): 1547-1555. doi: 10.1364/OE.26.001547
    [50] KRASNOKUTSKA I, TAMBASCO J L J, LI X J, et al. Ultra-low loss photonic circuits in lithium niobate on insulator[J]. Optics Express, 2018, 26(2): 897-904. doi: 10.1364/OE.26.000897
    [51] WANG J, BO F, WAN SH, et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation[J]. Optics Express, 2015, 23(18): 23072-23078. doi: 10.1364/OE.23.023072
    [52] WANG M, WU R B, LIN J T, et al. Chemo‐mechanical polish lithography: a pathway to low loss large‐scale photonic integration on lithium niobate on insulator[J]. Quantum Engineering, 2019, 1(1): e9. doi: 10.1002/que2.9
    [53] ZHANG J H, FANG ZH W, LIN J T, et al. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator[J]. Nanomaterials (Basel), 2019, 9(9): 1218. doi: 10.3390/nano9091218
    [54] HU H, RICKEN R, SOHLER W, et al. Lithium niobate ridge waveguides fabricated by wet etching[J]. IEEE Photonics Technology Letters, 2007, 19(6): 417-419. doi: 10.1109/LPT.2007.892886
    [55] ULLIAC G, CALERO V, NDAO A, et al. Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application[J]. Optical Materials, 2016, 53: 1-5. doi: 10.1016/j.optmat.2015.12.040
    [56] 张琨, 岳远斌, 李彤, 等. 感应耦合等离子体刻蚀在聚合物光波导制作中的应用[J]. 中国光学,2012,5(1):64-70. doi: 10.3969/j.issn.2095-1531.2012.01.010

    ZHANG K, YUE Y B, LI T, et al. Application of ICP etching in fabrication of polymer optical waveguide[J]. Chinese Optics, 2012, 5(1): 64-70. (in Chinese) doi: 10.3969/j.issn.2095-1531.2012.01.010
    [57] WANG CH, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101-104. doi: 10.1038/s41586-018-0551-y
    [58] WU R B, WANG M, XU J, et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness[J]. Nanomaterials (Basel), 2018, 8(11): 910. doi: 10.3390/nano8110910
    [59] LIN J T, XU Y X, FANG Z W, et al. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining[J]. Scientific Reports, 2015, 5(1): 8072.
    [60] RÜTER C E, SUNTSOV S, KIP D, et al. Characterization of diced ridge waveguides in pure and Er-doped lithium-niobate-on-insulator (LNOI) substrates[J]. Proceedings of SPIE, 2014, 8982: 89821G.
    [61] VOLK M F, SUNTSOV S, RÜTER C E, et al. Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing[J]. Optics Express, 2016, 24(2): 1386-1391. doi: 10.1364/OE.24.001386
    [62] AHMED A N R, NELAN S, SHI SH Y, et al. Subvolt electro-optical modulator on thin-film lithium niobate and silicon nitride hybrid platform[J]. Optics Letters, 2020, 45(5): 1112-1115. doi: 10.1364/OL.381892
    [63] SOLER M, SCHOLTZ A, ZETO R, et al. Engineering photonics solutions for COVID-19[J]. APL Photonics, 2020, 5(9): 090901. doi: 10.1063/5.0021270
    [64] HONARDOOST A, JUNEGHANI F A, SAFIAN R, et al. Towards subterahertz bandwidth ultracompact lithium niobate electrooptic modulators[J]. Optics Express, 2019, 27(5): 6495-6501. doi: 10.1364/OE.27.006495
    [65] AHMED A N R, SHI SH Y, MERCANTE A J, et al. High-performance racetrack resonator in silicon nitride - thin film lithium niobate hybrid platform[J]. Optics Express, 2019, 27(21): 30741-30751. doi: 10.1364/OE.27.030741
    [66] JIN T N, ZHOU J CH, LIN P T. Mid-infrared electro-optical modulation using monolithically integrated titanium dioxide on lithium niobate optical waveguides[J]. Scientific Reports, 2019, 9(1): 15130. doi: 10.1038/s41598-019-51563-5
    [67] RABIEI P, MA J CH, KHAN S, et al. Heterogeneous lithium niobate photonics on silicon substrates[J]. Optics Express, 2013, 21(21): 25573-25581. doi: 10.1364/OE.21.025573
    [68] RAO A, PATIL A, CHILES J, et al. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon[J]. Optics Express, 2015, 23(17): 22746-22752. doi: 10.1364/OE.23.022746
    [69] LI SH, CAI L T, WANG Y W, et al. Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe[J]. Optics Express, 2015, 23(19): 24212-24219. doi: 10.1364/OE.23.024212
    [70] LIU Y, LI H, LIU J, et al. Low Vπ thin-film lithium niobate modulator fabricated with photolithography[J]. Optics Express, 2021, 29(5): 6320-6329. doi: 10.1364/OE.414250
    [71] AHMED A N R, SHI SH Y, MERCANTE A, et al. High-efficiency lithium niobate modulator for K band operation[J]. APL Photonics, 2020, 5(9): 091302. doi: 10.1063/5.0020040
    [72] XU M Y, HE M B, ZHANG H G, et al. High-performance coherent optical modulators based on thin-film lithium niobate platform[J]. Nature Communications, 2020, 11(1): 3911. doi: 10.1038/s41467-020-17806-0
    [73] HAN H P, XIANG B X. Integrated electro-optic modulators in x-cut lithium niobate thin film[J]. Optik, 2020, 212: 164691. doi: 10.1016/j.ijleo.2020.164691
    [74] DESIATOV B, SHAMS-ANSARI A, ZHANG M, et al. Ultra-low-loss integrated visible photonics using thin-film lithium niobate[J]. Optica, 2019, 6(3): 380-384. doi: 10.1364/OPTICA.6.000380
    [75] HE M B, XU M Y, REN Y X, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond[J]. Nature Photonics, 2019, 13(5): 359-364. doi: 10.1038/s41566-019-0378-6
    [76] XU M Y, CHEN W J, HE M B, et al. Michelson interferometer modulator based on hybrid silicon and lithium niobate platform[J]. APL Photonics, 2019, 4(10): 100802. doi: 10.1063/1.5115136
    [77] JIAN J, XU M Y, LIU L, et al. High modulation efficiency lithium niobate Michelson interferometer modulator[J]. Optics Express, 2019, 27(13): 18731-18739. doi: 10.1364/OE.27.018731
    [78] CAI L T, KANG Y, HU H. Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film[J]. Optics Express, 2016, 24(5): 4640-4647. doi: 10.1364/OE.24.004640
    [79] LI M X, LING J W, HE Y, et al. Lithium niobate photonic-crystal electro-optic modulator[J]. Nature Communications, 2020, 11(1): 4123. doi: 10.1038/s41467-020-17950-7
    [80] BAHADORI M, YANG Y S, HASSANIEN A E, et al. Ultra-efficient and fully isotropic monolithic microring modulators in a thin-film lithium niobate photonics platform[J]. Optics Express, 2020, 28(20): 29644-29661. doi: 10.1364/OE.400413
    [81] KRASNOKUTSKA I, TAMBASCO J L J, PERUZZO A. Tunable large free spectral range microring resonators in lithium niobate on insulator[J]. Scientific Reports, 2019, 9(1): 11086. doi: 10.1038/s41598-019-47231-3
    [82] JIN SH L, XU L T, ZHANG H H, et al. LiNbO3 Thin-film modulators using silicon nitride surface ridge waveguides[J]. IEEE Photonics Technology Letters, 2016, 28(7): 736-739. doi: 10.1109/LPT.2015.2507136
    [83] REN T H, ZHANG M, WANG CH, et al. An integrated low-voltage broadband lithium niobate phase modulator[J]. IEEE Photonics Technology Letters, 2019, 31(11): 889-892. doi: 10.1109/LPT.2019.2911876
  • 加载中
图(11) / 表(9)
计量
  • 文章访问数:  4674
  • HTML全文浏览量:  4669
  • PDF下载量:  1624
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-24
  • 修回日期:  2021-06-25
  • 网络出版日期:  2021-10-16
  • 刊出日期:  2022-01-19

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!