留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DMD光刻和电沉积结合制备金微阵列电极的结构优化与性能检测

杨东方 陆子凤 刘华 单桂晔

杨东方, 陆子凤, 刘华, 单桂晔. DMD光刻和电沉积结合制备金微阵列电极的结构优化与性能检测[J]. 中国光学. doi: 10.37188/CO.2021-0109
引用本文: 杨东方, 陆子凤, 刘华, 单桂晔. DMD光刻和电沉积结合制备金微阵列电极的结构优化与性能检测[J]. 中国光学. doi: 10.37188/CO.2021-0109
YANG Dong-fang, LU Zi-feng, LIU Hua, SHAN Gui-ye. Fabrication of gold microarray electrode based on DMD lithography and electrodeposition[J]. Chinese Optics. doi: 10.37188/CO.2021-0109
Citation: YANG Dong-fang, LU Zi-feng, LIU Hua, SHAN Gui-ye. Fabrication of gold microarray electrode based on DMD lithography and electrodeposition[J]. Chinese Optics. doi: 10.37188/CO.2021-0109

DMD光刻和电沉积结合制备金微阵列电极的结构优化与性能检测

doi: 10.37188/CO.2021-0109
基金项目: 国家自然科学基金 ( No. 61875036 );吉林省科技发展计划,吉林省科技发展计划项目 ( No. 20190302049GX )
详细信息
    作者简介:

    杨东方(1995—),女,山西忻州人,硕士研究生,现为东北师范大学物理学院硕士研究生,主要从事微纳加工,DMD光刻等方面的研究。E-mail:873717301@qq.com

    陆子凤(1974—),女,黑龙江绥滨县绥滨农场人,博士,现为东北师范大学物理学院教师,主要从事微纳加工,3D打印等方面的研究工作。E-mail:luzf934@nenu.edu.cn

    刘 华(1976—),女,辽宁省抚顺人,博士,现为东北师范大学物理学院教授,主要从事光敏材料和玻璃材料的3D微纳打印方向研究工作。E-mail:liuh146@nenu.edu.cn

  • 中图分类号: O439

Fabrication of gold microarray electrode based on DMD lithography and electrodeposition

Funds: Supported by National Natural Science Foundation of China (No. 61875036); Jilin Scientific and Technological Development Program (No. 20190302049GX).
More Information
  • 摘要: 为提高微阵列电极 (Microarray electrodes, MAE) 的检测效率,降低生产成本,提出了一种将数字微镜器件 (DMD) 无掩模投影光刻与电化学沉积相结合的技术。首先,利用光刻系统压电平台 (PZS) 的高分辨率运动和DMD生成图案的灵活性等优点,制备了用户可自定义的微结构阵列,接着,通过电化学沉积获得Au导电层,实现了均匀的Au微阵列电极 (Au/MAE) 的制备。然后通过循环伏安法,比较了不同结构的Au/MAE的电化学性能,获得了优化的结构参数。最后,研究了优化后的Au/MAE对于不同浓度和pH值的葡萄糖的电流响应,并通过计时电流法对Au/MAE检测葡萄糖的抗干扰能力进行了测试。电化学分析表明,这种简单的Au/MAE对葡萄糖的电化学检测具有显著的安培响应和较强的抗干扰能力,其灵敏度为101 μA·cm−2·mM−1。这种微阵列电极的制备方法,具有分辨率高、一致性高、工艺简单、成本低的优点,为生物传感阵列的制造提供了切实可行的操作方案。
  • 图  1  (a) 基于DMD的无掩模投影光刻系统示意图 (b) 电化学沉积的实验装置图

    Figure  1.  (a) Schematic diagram of maskless projection lithography system based on DMD (b) experimental setup of electrochemical deposition

    图  2  Au/MAE的制备流程图 (a) 基片预处理 (b) 旋涂光刻胶和前烘 (c) 曝光并显影(d) 电化学沉积Au纳米层 (e) 去除光刻胶

    Figure  2.  Flow chart of Au/MAE electrode preparation (a) substrate pretreatment (b) spin coating photoresist and pre drying (c) exposure and development (d) electrochemical deposition of Au nano layer (e) photoresist removal

    图  3  周期性结构:圆形 ((a) 和 (d)) 和六边形 ((b) 和 (e)) 以及三角形 ((c) 和 (f)) 的MAE和Au/MAE在光学显微镜下的实际曝光和电沉积结果

    Figure  3.  Periodic structure:the actual exposure and electrodeposition results of MAE and Au/MAE of circle ((a) and (d)), hexagon ((b) and (E)) and triangle ((c) and (f)) under optical microscope

    图  4  非周期性结构:椭圆形 ((a) 和 (d)) 和六边形 ((b) 和 (e)) 以及五角星 ((c) 和 (f)) 的 MAE和Au/MAE在光学显微镜下的实际曝光和电沉积结果

    Figure  4.  Aperiodic structure: the actual exposure and electrodeposition results of MAE and Au/MAE of ellipse ((a) and (d)) , hexagon ((b) and (e)) and pentagram ((c) and (f)) under optical microscope

    图  5  总表面积不变,单元表面积对氧化还原峰电流的影响。周期性排列的 (a) 圆形 (b) 六边形 (c) 三角形以及非周期性排列的 (d) 椭圆 (e) 六边形 (f) 五角星结构的Au/MAE的CV图

    Figure  5.  The effect of unit surface area on the redox peak current with the same total surface area. CV diagrams of Au/MAE with periodic (a) circle (b) hexagon (c) triangle and aperiodic (d) ellipse (E) hexagon (f) pentagram structure

    图  6  (a) 总表面积一定时,氧化峰电流值与电极单元表面积的关系 (b) 氧化峰电流值与电极的总表面积的关系曲线

    Figure  6.  (a) Relationship between oxidation peak current and electrode unit surface area when total surface area is constant (b) relationship curve between oxidation peak current and total surface area of electrode

    图  7  (a) 密集排列的MAE的显微镜图像和 (b) 电沉积后的Au/MAE的光学显微镜图 (c)全部曝光后的显微镜图像 (d)电沉积后的单个Au电极光学显微镜图

    Figure  7.  (a) Microscope image of MAE with the most closely arranged structure (b) microscope image of Au/MAE after electrodeposition (c) microscope image after all exposure for the whole area (d) microscope image of single Au electrode after electrodeposition

    图  8  Au电极与Au/MAE电化学性能比较

    Figure  8.  Comparison of electrochemical performance between Au electrode and Au/MAE

    图  9  (a) Au/MAE在含有1Mm葡萄糖的0.1mM PBS (pH 7.0) 缓冲溶液中不同扫速下 (10−1000 mV/s) 的CV图 (b) 在不同扫描速率下的阳极和阴极峰值电流拟合图

    Figure  9.  (a) CV diagram of Au/MAE electrode in 0.1 mM PBS (pH 7.0) buffer solution containing 1 mM glucose at different scanning rates (10−1000 mV/s) (b) fitting diagram of anode and cathode peak currents at different scanning rates

    图  10  (a) 在0.1 M PBS (pH 7.0) 条件下,葡萄糖浓度不同时的Au/MAE的循环伏安图(扫描速率100 mV/s) (b) 相应的校准曲线 (c) Au/MAE在电压为0.5 V,0.1 M PBS中连续加入葡萄糖时安培响应 (d) 对应的拟合曲线

    Figure  10.  (a) Cyclic voltammograms of Au/MAE electrode with different glucose concentrations in 0.1 M PBS (pH 7.0) (scanning rate 100 mV / s) (b) the corresponding calibration curve(c) amperometric response of Au/MAE electrode to the continuous addition glucose in 0.1 M PBS , when the voltage is 0.5V (d) the corresponding fitting curve

    图  11  (a) 0.5 V电压下,在PBS(浓度0.1M,pH 7.0)缓冲溶液中连续添加1.5 mM葡萄糖、1 mM Urea、1 mM AA、1 mM乳糖、1 mM NaCl和6 mM葡萄糖时,电极的安培响应(b) 与目标分析物相比,相应的干扰信号的百分比

    Figure  11.  (a) The amperometric response of the electrode under 0.5 V voltage and continuous addition of 1.5 mM glucose, 1 mM urea, 1 mM MAA, 1 mM lactose, 1 mM NaCl and 6 mM glucose to PBS (concentration 0.1 M, pH 7.0) buffer solution (b) the percentage of interfering signals corresponding to the target analyte

  • [1] ZHONG SH L, ZHUANG J Y, YANG D P, et al. Eggshell membrane-templated synthesis of 3D hierarchical porous Au networks for electrochemical nonenzymatic glucose sensor[J]. Biosensors and Bioelectronics, 2017, 96: 26-32. doi: 10.1016/j.bios.2017.04.038
    [2] KAYRAN Y U, JAMBREC D, SCHUHMANN W. Nanostructured DNA microarrays for dual SERS and electrochemical read-out[J]. Electroanalysis, 2019, 31(2): 267-272. doi: 10.1002/elan.201800579
    [3] PODESVA P, LIU X CH, PUMERA M, et al. Tailorable nanostructured mercury/gold amalgam electrode arrays with varied surface areas and compositions[J]. Sensors and Actuators B:Chemical, 2020, 302: 127175. doi: 10.1016/j.snb.2019.127175
    [4] 汤洋. 硝酸铟诱导的电沉积氧化锌纳米柱光学性质裁剪[J]. 发光学报,2020,41(5):571-578. doi: 10.3788/fgxb20204105.0571

    TANG Y. In(NO3)3 induced tailoring of ZnO Nanorods' optical properties by electrodeposition[J]. Chinese Journal of Luminescence, 2020, 41(5): 571-578. (in Chinese) doi: 10.3788/fgxb20204105.0571
    [5] PIYA R, ZHU Y, SOERIYADI A H, et al. Micropatterning of porous silicon Bragg reflectors with poly (ethylene glycol) to fabricate cell microarrays: towards single cell sensing[J]. Biosensors and Bioelectronics, 2019, 127: 229-235. doi: 10.1016/j.bios.2018.12.001
    [6] 蔡元红, 高欣, 王警辉, 等. 微热通道电极结构宽条形半导体激光器输出特性[J]. 发光学报,2021,42(4):518-525. doi: 10.37188/CJL.20200365

    CAI Y H, GAO X, WANG J H, et al. Output characteristics of Broad-area stripe semiconductor lasers with microthermal channel anode structure[J]. Chinese Journal of Luminescence, 2021, 42(4): 518-525. (in Chinese) doi: 10.37188/CJL.20200365
    [7] ZHAO W, ZHANG R L, XU SH, et al. Molecularly imprinted polymeric nanoparticles decorated with Au NPs for highly sensitive and selective glucose detection[J]. Biosensors and Bioelectronics, 2018, 100: 497-503. doi: 10.1016/j.bios.2017.09.020
    [8] 王丽嫣, 刘可为, 陈星, 等. 基于Ag微孔阵列结构电极的MgZnO紫外探测器制备和特性[J]. 发光学报,2021,42(2):201-207. doi: 10.37188/CJL.20200362

    WANG L Y, LIU K W, CHEN X, et al. Fabrication and characteristics of MgZnO ultraviolet detector based on Ag microporous array structure electrode[J]. Chinese Journal of Luminescence, 2021, 42(2): 201-207. (in Chinese) doi: 10.37188/CJL.20200362
    [9] MIR M, DONDAPATI S K, DUARTE M V, et al. Electrochemical biosensor microarray functionalized by means of biomolecule friendly photolithography[J]. Biosensors and Bioelectronics, 2010, 25(9): 2115-2121. doi: 10.1016/j.bios.2010.02.012
    [10] AN L, WANG G T, HAN Y, et al. Electrochemical biosensor for cancer cell detection based on a surface 3D micro-array[J]. Lab on a Chip, 2018, 18(2): 335-342. doi: 10.1039/C7LC01117B
    [11] 汤洋, 赵颖, 张增光, 等. 氧化锌纳米柱阵列的水热合成及其性能[J]. 材料研究学报,2015,29(7):529-534. doi: 10.11901/1005.3093.2014.434

    TANG Y, ZHAO Y, ZHANG Z G, et al. Hydrothermal synthesis and properties of ZnO nanorod arrays[J]. Chinese Journal of Materials Research, 2015, 29(7): 529-534. (in Chinese) doi: 10.11901/1005.3093.2014.434
    [12] PIYA R, ZHU Y, SOERIYADI A H, et al. Micropatterning of porous silicon Bragg reflectors with poly (ethylene glycol) to fabricate cell microarrays: towards single cell sensing[J]. Biosensors and Bioelectronics, 2019, 127: 229-235. doi: 10.1016/j.bios.2018.12.001
    [13] XIAO X Z, LÜ C, WANG G, et al. Flexible triboelectric nanogenerator from micro-nano structured polydimethylsiloxane[J]. Chemical Research in Chinese Universities, 2015, 31(3): 434-438. doi: 10.1007/s40242-015-4432-8
    [14] RAYMUNDO-PEREIRA P A, SHIMIZU F M, COELHO D, et al. A nanostructured bifunctional platform for sensing of glucose biomarker in artificial saliva: synergy in hybrid Pt/Au surfaces[J]. Biosensors and Bioelectronics, 2016, 86: 369-376. doi: 10.1016/j.bios.2016.06.053
    [15] VERMA A K, DAS R, SONI R K. Laser fabrication of periodic arrays of microsquares on silicon for SERS application[J]. Applied Surface Science, 2018, 427: 133-140. doi: 10.1016/j.apsusc.2017.08.143
    [16] CHEN R H, LIU H, ZHANG H L, et al. Edge smoothness enhancement in DMD scanning lithography system based on a wobulation technique[J]. Optics Express, 2017, 25(18): 21958-21968. doi: 10.1364/OE.25.021958
    [17] XIONG ZH, LIU H, CHEN R H, et al. Illumination uniformity improvement in digital micromirror device based scanning photolithography system[J]. Optics Express, 2018, 26(14): 18597-18607. doi: 10.1364/OE.26.018597
    [18] LI Q K, XIAO Y, LIU H, et al. Analysis and correction of the distortion error in a DMD based scanning lithography system[J]. Optics Communications, 2019, 434: 1-6. doi: 10.1016/j.optcom.2018.10.042
    [19] ZHANG Y, LUO J, XIONG ZH, et al. User-defined microstructures array fabricated by DMD based multistep lithography with dose modulation[J]. Optics Express, 2019, 27(22): 31956-31966. doi: 10.1364/OE.27.031956
    [20] QIU C C, WANG X, LIU X Y, et al. Direct electrochemistry of glucose oxidase immobilized on nanostructured gold thin films and its application to bioelectrochemical glucose sensor[J]. Electrochimica Acta, 2012, 67: 140-146. doi: 10.1016/j.electacta.2012.02.011
  • 加载中
图(11)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  33
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-10-16

目录

    /

    返回文章
    返回