留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of off-axis multi-reflective optical system based on particle swarm optimization

WU Yue WANG Li-ping YU Jie ZHANG Xu JIN Chun-shui

吴越, 王丽萍, 于杰, 张旭, 金春水. 基于粒子群算法离轴多反光学系统设计[J]. 中国光学, 2021, 14(6): 1435-1450. doi: 10.37188/CO.2021-0087
引用本文: 吴越, 王丽萍, 于杰, 张旭, 金春水. 基于粒子群算法离轴多反光学系统设计[J]. 中国光学, 2021, 14(6): 1435-1450. doi: 10.37188/CO.2021-0087
WU Yue, WANG Li-ping, YU Jie, ZHANG Xu, JIN Chun-shui. Design of off-axis multi-reflective optical system based on particle swarm optimization[J]. Chinese Optics, 2021, 14(6): 1435-1450. doi: 10.37188/CO.2021-0087
Citation: WU Yue, WANG Li-ping, YU Jie, ZHANG Xu, JIN Chun-shui. Design of off-axis multi-reflective optical system based on particle swarm optimization[J]. Chinese Optics, 2021, 14(6): 1435-1450. doi: 10.37188/CO.2021-0087

基于粒子群算法离轴多反光学系统设计

doi: 10.37188/CO.2021-0087
详细信息
  • 中图分类号: TN305.7

Design of off-axis multi-reflective optical system based on particle swarm optimization

Funds: Supported by National Science and Technology Major Project (No. 2018ZX02102002)
More Information
    Author Bio:

    WU Yue (1993—), male, born in Huanggang, Hubei Province, Ph.D. student. He received his bachelor's degree from Northeast Normal University in 2015. He is mainly engaged in the research of optical design. E-mail: wy2398236580@163.com

    WANG Li-ping (1981—), female, born in Changchun, Jilin Province. She is a Ph.D., researcher. She received her doctor's degree from Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences in 2009. She is mainly engaged in the research on optics technology of EUV. She has published 17 articles and 26 authorized patents. E-mail: wlp8121@126.com

    JIN Chun-shui (1964—), male, born in Changchun, Jilin, Ph.D., researcher, doctoral supervisor. He received his Ph.D. degree from Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences in 2003. He is mainly engaged in the research on UV-EUV imaging optics, UV-EUV optical thin film technology and ultra-high-precision optical metrology. E-mail: jincs@sklao.ac.cn

    Corresponding author: wlp8121@126.comjincs@sklao.ac.cn
  • 摘要: 满足像差平衡和多约束控制的初始结构构建,是实现极小像差离轴多反光学系统的设计关键。本文基于空间光线追迹与像差矫正相结合的分组设计方法建立离轴多反的初始结构计算数学模型,提出了一种改进的粒子群算法用以解决离轴多反光学系统的初始结构问题,采用带收缩因子的自然选择的粒子群算法提高了计算精度,提升了设计效率,获取了离轴多反光学系统的初始结构。最后,本文以离轴六反的极紫外光刻投影物镜为例,验证此方法的可靠性和有效性,实现了0.33NA极紫外光刻物镜综合波像差优于$1/80\lambda $ RMS光学系统设计。
  • 图  1  离轴六反光学系统结构示意图

    Figure  1.  Schematic diagram of the Off-axis six-mirror reflective optical system structure

    图  2  Group 1结构示意图

    Figure  2.  Group 1 structure schematic diagram

    图  3  Group 2示意图

    Figure  3.  Schematic diagram of the Group 2

    图  4  针对6组学习因子4种不同算法计算的评价函数的收敛曲线图

    Figure  4.  Convergence curves of evaluation functions calculated by four different algorithms for 6 groups of learning factors

    图  5  算法流程图

    Figure  5.  Flow chart of the proposed algorithm

    图  6  离轴六反光学系统初始结构示意图

    Figure  6.  Schematic diagram of initial structure for the off-axis six-mirror reflective optical system

    图  7  极小像差离轴六反光学系统优化后结构示意图

    Figure  7.  Schematic diagram of the optimized structure for the off-axis six-mirror reflective optical system

    图  8  离轴六反光学系统全视场畸变分布图

    Figure  8.  Distortion on full image field for the off-axis six-mirror reflective optical system

    图  9  离轴六反光学系统全视场波像差分布图

    Figure  9.  Wavefront error RMS on full image for the off-axis six-mirror reflective optical system

    表  1  Evaluation function values calculated by four different algorithms for 6 groups of learning factors

    Table  1.   Evaluation function values calculated by four different algorithms for 6 groups of learning factors

    c1c2Natural selection PSO algorithm
    with shrinkage factor
    Simulated annealing PSO
    algorithm with shrinkage factor
    Hybrid PSO algorithm
    with shrinkage factor
    Natural selection PSO algorithm
    with inertial weight
    2.052.050.01060.09850.09020.2415
    2.21.90.01740.11480.08830.0289
    2.31.80.00450.03730.04980.0297
    2.41.70.02550.06440.04720.0584
    2.51.60.01260.05330.01510.0407
    2.61.70.09340.12120.10410.1092
    下载: 导出CSV

    表  2  Specifications of the off-axis six-mirror reflective optical system

    Table  2.   Specifications of the off-axis six-mirror reflective optical system

    Parameter Performance
    Wavelength/nm 13.5
    Numerical Aperture 0.33
    Field of view/mm×mm 26×2 Arc
    Reduction ratio 4
    Wavefront error RMS (λ) 0.011
    Chief ray angle on mask (°) 6
    Max distortion/nm 1.04
    Max image telecentricity/mrad 1.75
    Total track/mm 1371
    Max asphere departure/μm 60
    下载: 导出CSV
  • [1] WILSON R N. Reflecting Telescope Optics I: Basic Design Theory and its Historical Development[M]. Berlin Heidelberg: Springer, 1996.
    [2] GONG T T, JIN G F, ZHU J. Point-by-point design method for mixed-surface-type off-axis reflective imaging systems with spherical, aspheric, and freeform surfaces[J]. Optics Express, 2017, 25(9): 10663-10676.
    [3] MENG Q Y, WANG H Y, LIANG W J, et al. Design of off-axis three-mirror systems with ultrawide field of view based on an expansion process of surface freeform and field of view[J]. Applied Optics, 2019, 58(3): 609-615.
    [4] PAN J H. The Design, Manufacture and Test of the Aspherical Optical Surfaces[M]. Suzhou: Soochow University Press, 2004. (in Chinese).
    [5] CHEN L, GAO ZH SH, YE J F, et al. Construction method through multiple off-axis parabolic surfaces expansion and mixing to design an easy-aligned freeform spectrometer[J]. Optics Express, 2019, 27(18): 25994-26013.
    [6] YU J, ZHOU F, WANG H, et al. Method for designing error-resistant phase-shifting algorithm[J]. Optics Communications, 2018, 433: 52-59.
    [7] WANG L P. Optical system of extreme ultraviolet lithography[J]. Chinese Journal of Optics and Applied, 2010, 3(5): 452-461. (in Chinese)
    [8] LOWISCH M, KUERZ P, CONRADI O, et al. Optics for ASML’s NXE: 3300B platform[J]. Proceedings of SPIE, 2013, 8679: 86791H.
    [9] CHANG J, ZOU M F, WANG R R, et al. All-reflective optical system design for extreme ultraviolet lithography[J]. Chinese Optics Letters, 2010, 8(11): 1082-1084. doi: 10.3788/COL20100811.1082
    [10] VASILJEVIC D M. Optimization of the Cooke triplet with various evolution strategies and damped least squares[J]. Proceedings of SPIE, 1999, 3780: 207-215.
    [11] LIU J, WEI H, FAN H J. A novel method for finding the initial structure parameters of optical systems via a genetic algorithm[J]. Optics Communications, 2016, 361: 28-35. doi: 10.1016/j.optcom.2015.10.036
    [12] BAL M F. Next-generation extreme ultraviolet lithographic projection systems[D]. Delft: Technique University Delft, 2003.
    [13] BAL M F, BOCIORT F, BRAAT J J M. Analysis, search, and classification for reflective ring-field projection systems[J]. Applied Optics, 2003, 42(13): 2301-2311. doi: 10.1364/AO.42.002301
    [14] LERNER S A, SASIAN J M, DESCOUR M R. Design approach and comparison of projection cameras for EUV lithography[J]. Optical Engineering, 2000, 39(3): 792-802. doi: 10.1117/1.602429
    [15] DELANO E. First-order design and the diagram[J]. Applied Optics, 1963, 2(12): 1251-1256. doi: 10.1364/AO.2.001251
    [16] HUDYMA R, MANN H J, DINGER U. Projection system for EUV lithography: USA, 7375798[P]. 2008-05-20.
    [17] LIU F, LI Y Q. Grouping design of eight-mirror projection objective for high-numerical aperture EUV lithography[J]. Applied Optics, 2013, 52(29): 7137-7144. doi: 10.1364/AO.52.007137
    [18] CAO ZH, LI Y Q, LIU F. Grouping design method with real ray tracing model for extreme ultraviolet lithographic objective[J]. Optical Engineering, 2013, 52(12): 125102.
    [19] WU Y, WANG L P, YU J, et al. Design method for off-axis aspheric reflective optical system with extremely low aberration and large field of view[J]. Applied Optics, 2020, 59(32): 10185-10193. doi: 10.1364/AO.409561
    [20] SHI G H. Find preliminary solution of zoom objective lens using gaussian optics and third-order aberration theory[J]. Chinese Optics, 2018, 11(6): 1047-1060. (in Chinese) doi: 10.3788/co.20181106.1047
    [21] WANG L P, ZHANG L CH, HE F Y, et al. Design of aspheric mirror for panoramic imaging system using multi-population genetic algorithm[J]. Optics and Precision Engineering, 2009, 17(5): 1020-1025. (in Chinese)
    [22] XU F G, HUANG W. Application of genetic algorithm in the design of off-axis four-mirror optical system[J]. Optics and Precision Engineering, 2017, 25(8): 2076-2082. (in Chinese) doi: 10.3788/OPE.20172508.2076
    [23] KENNEDY J, EBERHART R. Particle swarm optimization[C]. Proceedings of International Conference on Neural Networks, IEEE, 1995.
    [24] QIN H, HAN K ZH, LEI CH X. Correction of aberration for three-lens system by particle swarm optimization algorithm[J]. Chinese Optics, 2013, 6(1): 64-72. (in Chinese)
    [25] GONG CH, WANG ZH L. Proficient in MATLAB Optimization Calculation[M]. Beijing: Publishing House of Electronics Industry, 2009. (in Chinese)
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  365
  • HTML全文浏览量:  143
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-22
  • 修回日期:  2021-05-06
  • 网络出版日期:  2021-06-22
  • 刊出日期:  2021-11-19

目录

    /

    返回文章
    返回