留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高精度硅基集成光学温度传感器研究

王艺蒙 舒浩文 韩秀友

王艺蒙, 舒浩文, 韩秀友. 高精度硅基集成光学温度传感器研究[J]. 中国光学, 2021, 14(6): 1355-1361. doi: 10.37188/CO.2021-0054
引用本文: 王艺蒙, 舒浩文, 韩秀友. 高精度硅基集成光学温度传感器研究[J]. 中国光学, 2021, 14(6): 1355-1361. doi: 10.37188/CO.2021-0054
WANG Yi-meng, SHU Hao-wen, HAN Xiu-you. High-precision silicon-based integrated optical temperature sensor[J]. Chinese Optics, 2021, 14(6): 1355-1361. doi: 10.37188/CO.2021-0054
Citation: WANG Yi-meng, SHU Hao-wen, HAN Xiu-you. High-precision silicon-based integrated optical temperature sensor[J]. Chinese Optics, 2021, 14(6): 1355-1361. doi: 10.37188/CO.2021-0054

高精度硅基集成光学温度传感器研究

doi: 10.37188/CO.2021-0054
基金项目: 国家自然科学基金项目(No. 62075026,No. 61875028);博士后创新人才支持计划(No. BX20200017);国家级大学生创新训练项目(No. 2020101412100010090)
详细信息
    作者简介:

    王艺蒙(2000—),女,辽宁锦州人,大连理工大学2018级光电仪器科学与工程专业本科生,主要研究方向为集成电光调制器件。E-mail:wangyimeng@mail.dlut.edu.cn

    舒浩文(1993—),男,江西南昌人,北京大学博士后,2020年于北京大学获得博士学位,主要研究方向为硅基光电子学、集成微腔光学。E-mail:haowenshu@pku.edu.cn

    韩秀友(1977—),男,河北沧州人,大连理工大学教授,博士生导师,2006年于中国科学院上海光学精密机械研究所获得博士学位,主要从事集成光子学、微波光子学领域的研究。E-mail:xyhan@dlut.edu.cn

  • 中图分类号: TH691.9;TN379

High-precision silicon-based integrated optical temperature sensor

Funds: Supported by National Natural Science Foundation of China (No. 62075026, No. 61875028); China National Postdoctoral Program for Innovative Talents (No. BX20200017); National College Student Innovation Training Project of China (No. 2020101412100010090)
More Information
  • 摘要: 传统温度检测在传感精度和响应时间等方面存在一定局限性,而基于热光效应的芯片级光电传感器不仅能够提升测量灵敏度和速度,也有利于降低系统复杂度和制造成本,近年来引起了人们广泛的关注。目前的集成温度传感器大多通过测量光学谐振腔对宽谱光源或可调谐光源的光谱响应来提供精准快速的测量解决方案,但这种基于宽光谱检测的方案无法实现实时处理,且成本较高,信号后处理较复杂,难以实现系统的整体集成。本文针对以上问题,采用硅基集成微环阵列技术设计了快速高精度的温度测量方法,通过对不同温度下级联微环阵列对单频激光的不同响应,构建光电二极管输出响应与温度变化的单调关系,从而实现实时高精度温度测量。为了提升单频光下的温度传感范围,使用多微环级联结构,并基于该结构设计了一种包括光源、微环阵列、探测器阵列、信号后处理单元和输出数据单元的硅基集成温度传感系统。根据实际用途的不同,在保证低功耗低成本的同时,该系统可以通过分别对级联微环数量、中心谐振波长以及谐振峰半高宽的设计改变温度测量范围以及温度测量分辨率,拥有比较大的设计自由度以及灵活的测量范围。通过对微环阵列的优化设计,实现了响应范围覆盖−20~105 ℃、精度优于60 mK、响应时间优于20 μs的精准快速测量的温度传感。
  • 图  1  硅基集成微环谐振腔示意图

    Figure  1.  Schematic diagram of a micro-ring resonator

    图  2  (a)单个微环在不同温度下的波长响应结果;(b)左轴为输入波长固定时在不同温度下输出光强的变化;右轴为输入波长固定时输出光强对波长求导结果随温度的变化情况

    Figure  2.  (a) Wavelength response results of a single micro-ring at different temperatures; (b) normalized transmission is the change in output light intensity at different temperatures when the input wavelength is fixed; $\dfrac{{\rm{d}}I}{{\rm{d}}\lambda }$ is the derivation for output light intensity versus wavelength varying with temperature when the input wavelength is fixed

    图  3  (a) 微环级联结构图; (b) 多个微环光谱响应结果

    Figure  3.  (a) Micro-ring cascade structure diagram; (b) spectral response results of micro-ring arrays

    图  4  温度传感系统

    Figure  4.  Temperature sensing system

    图  5  微环阵列实际输出光强与波长的关系

    Figure  5.  Actual output light intensity of micro-ring array varying with wavelength

    图  6  (a)输出信号进行加权求和之后的相对输出电信号强度与实际温度的关系;(b)不同微环数量的微环阵列输出信号加权求和后相对输出电信号强度对应实际温度的关系;(c)微环阵列温度测量范围对应半径的关系;(d)灵活配置级联阵列参数得到最大温度测量范围时输出信号与实际温度的关系

    Figure  6.  (a) Relationship between the relative output signal intensity and the actual temperature after the weighted summation of the output signal; (b) relationship between the relative output signal intensity and the actual temperature after the weighted summation of the output signals of the micro-ring array with different numbers of micro-rings; (c) relationship between the micro-ring array temperature measurement range and the corresponding radius; (d) relationship between the output signal and the actual temperature when the cascade array parameters are configured flexibly to obtain the maximum temperature measurement range

    图  7  (a)对光源1%光强抖动采样的局部结果;(b)测量精度范围分析

    Figure  7.  (a) Partial result of sampling of 1% light intensity jitter of the light source; (b) analysis of measurement accuracy range

    图  8  温度响应速度

    Figure  8.  Temperature response speed

  • [1] XU H T, HAFEZI M, FAN J, et al. Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures[J]. Optics Express, 2014, 22(3): 3098-3104. doi: 10.1364/OE.22.003098
    [2] KLIMOV N N, MITTAL S, BERGER M, et al. On-chip silicon waveguide Bragg grating photonic temperature sensor[J]. Optics Letters, 2015, 40(17): 3934-3936. doi: 10.1364/OL.40.003934
    [3] ZHANG H, SHANG J Y, LIU X J, et al. High-sensitivity fiber liquid crystals temperature sensor with tiny size and simple tapered structure[J]. Chinese Optics Letters, 2020, 18(10): 101202. doi: 10.3788/COL202018.101202
    [4] RAO Y J, WEBB D J, JACKSON D A, et al. In-fiber Bragg-grating temperature sensor system for medical applications[J]. Journal of Lightwave Technology, 1997, 15(5): 779-785. doi: 10.1109/50.580812
    [5] IRACE A, BREGLIO G. All-silicon optical temperature sensor based on Multi-Mode Interference[J]. Optics Express, 2003, 11(22): 2807-2812. doi: 10.1364/OE.11.002807
    [6] 史振江, 李志全, 陆飞. 硅基波导微环谐振腔光学传输特性研究[J]. 传感器世界,2020,26(8):7-11. doi: 10.3969/j.issn.1006-883X.2020.08.001

    SHI ZH J, LI ZH Q, LU F. Research on optical transmission characteristics of microring resonator with silicon waveguide[J]. Sensor World, 2020, 26(8): 7-11. (in Chinese) doi: 10.3969/j.issn.1006-883X.2020.08.001
    [7] QU ZH Y, LU P, LI Y J, et al. Low-frequency acoustic Fabry–Pérot fiber sensor based on a micromachined silicon nitride membrane[J]. Chinese Optics Letters, 2020, 18(10): 101201. doi: 10.3788/COL202018.101201
    [8] 吴妮珊, 夏历. 基于微波光子学的准分布式光纤传感解调技术[J]. 中国光学,2021,14(2):245-263. doi: 10.37188/CO.2020-0121

    WU N SH, XIA L. Interrogation technology for quasi-distributed optical fiber sensing systems based on microwave photonics[J]. Chinese Optics, 2021, 14(2): 245-263. (in Chinese) doi: 10.37188/CO.2020-0121
    [9] GUAN X W, WANG X Y, FRANDSEN L H. Silicon photonic thermometer operating on multiple polarizations[C]. Conference on Lasers and Electro-Optics, Optical Society of America, 2016: JW2A. 131.
    [10] KLIMOV N N, PURDY T, AHMED Z. Chip-packaged silicon photonic nanoscale thermometers[C]. Conference on Lasers and Electro-Optics, Optical Society of America, 2016: AW1J. 6.
    [11] KLIMOV N, PURDY T, AHMED Z. Towards replacing resistance thermometry with photonic thermometry[J]. Sensors and Actuators A:Physical, 2018, 269: 308-312. doi: 10.1016/j.sna.2017.11.055
    [12] KLIMOV N N, PURDY T, AHMED Z. On-chip integrated silicon photonic thermometers[J]. Sensors &Transducers, 2015, 191(8): 67-71.
    [13] BOGAERTS W, DE HEYN P, VAN VAERENBERGH T, et al. Silicon microring resonators[J]. Laser &Photonics Reviews, 2012, 6(1): 47-73.
    [14] AHMED Z, FILLA J, GUTHRIE W, et al. Fiber Bragg grating based thermometry[J]. NCSLI Measure, 2015, 10(4): 28-31. doi: 10.1080/19315775.2015.11721744
    [15] LEUTHOLD J, KOOS C, FREUDE W, et al. Silicon-organic hybrid electro-optical devices[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(6): 3401413.
    [16] 张家一, 罗莉君, 刘晓红, 等. 电化学发光传感器在农业传感领域中的研究进展[J]. 应用化学,2019,34(6):379-391.

    ZHANG J Y, LUO L J, LIU X H, et al. Research progress of electrochemistry sensors in the field of agricultural sensing[J]. Chinese Journal of Applied Chemistry, 2019, 34(6): 379-391. (in Chinese)
  • 加载中
图(8)
计量
  • 文章访问数:  418
  • HTML全文浏览量:  148
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-12
  • 修回日期:  2021-04-07
  • 网络出版日期:  2021-05-12
  • 刊出日期:  2021-11-19

目录

    /

    返回文章
    返回