留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维光栅位移测量技术综述

尹云飞 刘兆武 吉日嘎兰图 于宏柱 王玮 李晓天 鲍赫 李文昊 郝群

尹云飞, 刘兆武, 吉日嘎兰图, 于宏柱, 王玮, 李晓天, 鲍赫, 李文昊, 郝群. 二维光栅位移测量技术综述[J]. 中国光学, 2020, 13(6): 1224-1238. doi: 10.37188/CO.2020-0237
引用本文: 尹云飞, 刘兆武, 吉日嘎兰图, 于宏柱, 王玮, 李晓天, 鲍赫, 李文昊, 郝群. 二维光栅位移测量技术综述[J]. 中国光学, 2020, 13(6): 1224-1238. doi: 10.37188/CO.2020-0237
YIN Yun-Fei, LIU Zhao-Wu, JIRIGALANTU, YU Hong-Zhu, WANG Wei, LI Xiao-Tian, BAO He, LI Wen-Hao, HAO Qun. Overview of 2D grating displacement measurement technology[J]. Chinese Optics, 2020, 13(6): 1224-1238. doi: 10.37188/CO.2020-0237
Citation: YIN Yun-Fei, LIU Zhao-Wu, JIRIGALANTU, YU Hong-Zhu, WANG Wei, LI Xiao-Tian, BAO He, LI Wen-Hao, HAO Qun. Overview of 2D grating displacement measurement technology[J]. Chinese Optics, 2020, 13(6): 1224-1238. doi: 10.37188/CO.2020-0237

二维光栅位移测量技术综述

doi: 10.37188/CO.2020-0237
基金项目: 国家重点研发计划项目(No. 2016YFB0500100),吉林省科技发展计划(No. 20190201021JC,No. 20190103158JH,No. 20190103157JH,No. 20190302047GX),广东省重点领域研发计划项目(No. 2019B010144001),国家自然科学基金(No. 61975255),民用航天预研项目(No. D040101)
详细信息
    作者简介:

    尹云飞(1995—),男,山西临汾人,博士研究生,2018年于中北大学获得学士学位,主要从事二维光栅位移测量等方面研究。E-mail:1920924393@qq.com

    刘兆武(1987—),男,黑龙江齐齐哈尔人,博士,副研究员,2006年于哈尔滨工业大学获得学士学位,2017年于中国科学院长春光学精密机械与物理研究所获博士学位,主要从事全息光栅研制和精密位移测量等方面研究。E-mail:zhaowuliu@ciomp.ac.cn

    李文昊(1980—),男,内蒙古赤峰人,博士,研究员,2002年于陕西科技大学获学士学位,2008年于中国科学院长春光学精密机械与物理研究所获博士学位,主要从事平面、凹面全息光栅的理论设计及制作工艺等方面的研究。E-mail:leewenho@163.com

    郝群:郝 群(1968—),女,博士,教授,1998年于清华大学获得工学博士学位,主要从事智能光电感测技术、精密光学测量及仪器等方面的研究。E-mail:qhao@bit.edu.cn

  • 中图分类号: TP394.1;TH691.9

Overview of 2D grating displacement measurement technology

Funds: Supported by the National Key R & D Plan (No. 2016YFB0500100); Jinlin Province Science and Technology Development Plan (No. 20190201021JC, No. 20190103158JH, No. 20190103157JH, No. 20190302047GX), R & D Projects in Key Areas of Guangdong Province (No. 2019B010144001), National Natural Science Foundation of China (No. 61975255), Civil Aerospace Pre-research Project (No. D040101)
More Information
  • 摘要: 超精密位移测量技术不仅是精密机械加工的基础,在以摩尔定律飞速发展的芯片制造行业中也起到决定性的作用。以光栅栅距为测量基准的光栅位移测量系统被广泛应用于多维测量系统,光栅位移测量系统与激光位移测量系统相比,大大降低了对使用环境的湿度、温度和气压的要求。本文主要介绍了近年来国内外基于二维光栅的位移传感系统光学结构的发展现状,从零差式和外差式光栅干涉测量原理入手,综述了基于单块二维光栅的光学结构到多块二维光栅耦合设计的光学结构发展历程,对比分析了几种二维光栅位移测量系统的优缺点,并展望了二维光栅位移测量系统发展趋势,总结了二维光栅位移测量系统的工程化进程。
  • 图  1  零差式光栅位移测量系统

    Figure  1.  Homodyne grating displacement measuring system

    图  2  一种外差式光栅位移测量系统

    Figure  2.  A heterodyne grating displacement measuring system

    图  3  正交衍射光栅工作原理图

    Figure  3.  Working principle diagram of orthogonal diffraction grating

    图  4  基于对角线的HGI的光学结构图

    Figure  4.  Optical structure of HGI based on diagonal

    图  5  空间分离式外差二维平面光栅位移测量光学结构

    Figure  5.  Optical structure of displacement measurement for spatially heterodyn 2D planar grating

    图  6  三维位移测量原理图

    Figure  6.  Schematic diagram of 3D displacement measurement system

    图  7  三维角度测量原理图

    Figure  7.  3-D angle measurement principle diagram

    图  8  (a)六维平面编码器样机及(b)传感器设计示意图

    Figure  8.  (a) 6-D planar encoder prototype and (b) schematic diagram of sensor

    图  9  Hsieh等人设计的(a)三维位移测量原理图及(b)六维测量原理图

    Figure  9.  Principle diagrams of (a) 3D and (b) 6D displacement measurement proposed by Hsieh et al.

    图  10  林杰等学者提出的位移测量结构图

    Figure  10.  Structural diagram of displacement measurement system by Lin Jie et al

    表  1  基于二维光栅位移测量系统性能对比表

    Table  1.   Performance comparison of two-dimensional grating displacement measurement system

    光栅分类研究单位/公司/
    研究者
    XY向分辨率/nm光学传感器尺寸/
    测量范围
    系统稳定性特点
    单二维光栅华中科技大学王选择等学者50 mm×50 mm同时进行XY向测量,在空间位置上实现同向测量。
    国防科技大学林存宝等学者分辨率优于0.125 nm;往返10 μm内,X向和Y向达2.35 nm和3.24 nm。X向与Y向测量幅度可达:9.981 μm和9.978 μm。在10分钟内的系统稳定性分别优于4 nm和6 nm。同时实现高对比度和高信噪比;可获得八倍光学细分,未考虑因偏振分离性能引起的周期非线性误差的影响。
    哈尔滨工业大学谭久彬等学者分辨率优于0.122 nm。125 mm×125 mm:可对XY方向上30 μm的位移进行测量。机械振动引起的实时测量误差不超过0.15 μm,且测量重复性优于±57 nm。成本低,可实现两次衍射;可消除周期非线性误差;增强测头的角度容差,不过信噪比较低,受振动影响较大。
    双二维光栅日本Gao.W等学者X轴与Y轴分辨率均在1 nm以上。光学传感器尺寸约为50 mm (X)×50 mm (Y)×30 mm (Z)。XYZ方向上的峰谷振幅误差分别为±10 nm、±10 nm和±3 nm。系统原理简单,分别可实现三维位移测量和三维角度测量,受自准直单元尺寸限制,未考虑非线性误差分量的影响。
    日本Li.X等学者可分辨ΔX、ΔY、ΔZ方向上的2 nm步进运动;θXθY方向上的0.1角秒步进运动;θZ方向上0.3角秒步进运动。传感器头的尺寸为95 mm(X) ×90 mm(Y) ×25 mm(Z)。XYZ方向上,偏振间误差的峰谷振幅分别为±6 nm、±7 nm和±6 nm。测量范围大,可实现六维测量,且对远程测量系统稳定性不佳。
    多二维光栅中国台湾国立中央大学Hsieh等学者两轴分辨率优于3 nm,实现六维测量,位移和角度测量分辨率分别为2 nm和0.05 μrad。闭环配置驱动压电平台,可实现X,YZ方向上1 μm的移动距离。在1小时内分辨率稳定性可达14 nm。同时实现六维测量和长行程测量,测量精度高,且结构复杂,稳定性较差,测量范围小。
    哈尔滨工业大学林杰、陆振刚等学者X向和Y向实现光学2细分,不进行电学细分下,检测分辨力为$2\sqrt 2 $ μm。两方向运动范围均为100 μm,Z向的运动范围为20 mm。稳定性较好杂散光影响小
    下载: 导出CSV
  • [1] BAI Y, HU P CH, LU Y F, et al. A six-axis heterodyne interferometer system for the Joule balance[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(6): 1579-1585. doi: 10.1109/TIM.2016.2634758
    [2] HORI Y, GONDA S, BITOU Y, et al. Periodic error evaluation system for linear encoders using a homodyne laser interferometer with 10 picometer uncertainty[J]. Precision Engineering, 2018, 51: 388-392. doi: 10.1016/j.precisioneng.2017.09.009
    [3] DENG J L, YAN X N, WEI CH L, et al. Eightfold optical encoder with high-density grating[J]. Applied Optics, 2018, 57(10): 2366-2375. doi: 10.1364/AO.57.002366
    [4] 卢兴吉, 曹振松, 黄印博, 等. 3.53 μm激光外差太阳光谱测量系统[J]. 光学 精密工程,2018,26(8):1846-1854. doi: 10.3788/OPE.20182608.1846

    LU X J, CAO ZH S, HUANG Y B, et al. Laser heterodyne spectrometer for solar spectrum measurement in the 3.53 μm region[J]. Optics and Precision Engineering, 2018, 26(8): 1846-1854. (in Chinese) doi: 10.3788/OPE.20182608.1846
    [5] 羡一民. 激光干涉仪的应用——激光干涉仪技术综述之五[J]. 工具技术,2015,49(2):79-85. doi: 10.3969/j.issn.1000-7008.2015.02.023

    XIAN Y M. Applications of laser interferometer——Summary of laser interferometer technology[J]. Tool Engineering, 2015, 49(2): 79-85. (in Chinese) doi: 10.3969/j.issn.1000-7008.2015.02.023
    [6] VAN DER P E A F, LOOPSTRA E R. Position measurement unit, measurement system and lithographic apparatus comprising such position measurement unit: US, 7362446[P]. 2008-04-22.
    [7] FAN K CH, LIAO B H, CHUNG Y CH, et al.. Displacement measurement of planar stage by diffraction planar encoder in nanometer resolution[C]. Proceedings of 2012 IEEE International Instrumentation and Measurement Technology Conference, IEEE, 2012: 894-897.
    [8] 王韵致, 谢芳, 陈龙辉, 等. 用于高精度测量位移等参量的光纤多波长激光器[J]. 光学 精密工程,2019,27(9):2036-2042. doi: 10.3788/OPE.20192709.2036

    WANG Y ZH, XIE F, CHEN L H, et al. Research on optical fiber multi-wavelength laser for measuring displacement precisely[J]. Optics and Precision Engineering, 2019, 27(9): 2036-2042. (in Chinese) doi: 10.3788/OPE.20192709.2036
    [9] 高旭, 李舒航, 马庆林, 等. 光栅精密位移测量技术发展综述[J]. 中国光学,2019,12(4):741-752. doi: 10.3788/co.20191204.0741

    GAO X, LI SH H, MA Q L, et al. Development of grating-based precise displacement measurement technology[J]. Chinese Optics, 2019, 12(4): 741-752. (in Chinese) doi: 10.3788/co.20191204.0741
    [10] 吕强, 李文昊, 巴音贺希格, 等. 基于衍射光栅的干涉式精密位移测量系统[J]. 中国光学,2017,10(1):39-50. doi: 10.3788/co.20171001.0039

    LV Q, LI W H, BAYANHESHIG, et al. Interferometric precision displacement measurement system based on diffraction grating[J]. Chinese Optics, 2017, 10(1): 39-50. (in Chinese) doi: 10.3788/co.20171001.0039
    [11] Optra Inc. The Nano grid principle of Measure[EB/OL]. [2019-04-12]. https://www.heidenhain.com.cn/zh_CN/company/.
    [12] GAO W, DEJIMA S, KIYONO S. A dual-mode surface encoder for position measurement[J]. Sensors and Actuators A:Physical, 2005, 117(1): 95-102. doi: 10.1016/j.sna.2004.06.004
    [13] KIMURA A, GAO W, ARAI Y, et al. Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness[J]. Precision Engineering, 2010, 34(1): 145-155. doi: 10.1016/j.precisioneng.2009.05.008
    [14] KIMURA A, GAO W, ZENG L J. Position and out-of-straightness measurement of a precision linear air-bearing stage by using a two-degree-of-freedom linear encoder[J]. Measurement Science and Technology, 2010, 21(5): 054005. doi: 10.1088/0957-0233/21/5/054005
    [15] KIMURA A, GAO W, KIM W J, et al. A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement[J]. Precision Engineering, 2012, 36(4): 576-585. doi: 10.1016/j.precisioneng.2012.04.005
    [16] GAO W, SAITO Y, MUTO H, et al. A three-axis autocollimator for detection of angular error motions of a precision stage[J]. CIRP Annals, 2011, 60(1): 515-518. doi: 10.1016/j.cirp.2011.03.052
    [17] LI X H, GAO W, MUTO H, et al. A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage[J]. Precision Engineering, 2013, 37(3): 771-781. doi: 10.1016/j.precisioneng.2013.03.005
    [18] GAO W, KIM S W, BOSSE H, et al. Measurement technologies for precision positioning[J]. CIRP Annals, 2015, 64(2): 773-796. doi: 10.1016/j.cirp.2015.05.009
    [19] 周维来. 光栅干涉仪在高精密测量中的技术和应用[J]. 工具技术,1994,28(1):37-42.

    ZHOU W L. Technology and application of grating interferometer in high precision measurement[J]. Tool Engineering, 1994, 28(1): 37-42. (in Chinese)
    [20] CASTENMILLER T, VAN DE MAST F, DE KORT T, et al. Towards ultimate optical lithography with NXT:1950i dual stage immersion platform[J]. Proceedings of SPIE, 2013, 7640: 76401N.
    [21] 夏豪杰, 费业泰, 范光照, 等. 基于衍射光栅的二维纳米位移测量技术[J]. 纳米技术与精密工程,2007,5(4):311-314. doi: 10.3969/j.issn.1672-6030.2007.04.019

    XIA H J, FEI Y T, FAN G ZH, et al. 2D Nano-displacement measurement with diffraction grating[J]. Nanotechnology and Precision Engineering, 2007, 5(4): 311-314. (in Chinese) doi: 10.3969/j.issn.1672-6030.2007.04.019
    [22] 夏豪杰. 高精度二维平面光栅测量系统及关键技术研究[D]. 合肥: 合肥工业大学, 2006.

    XIA H J. Research on precise 2-D plane grating measurement system and key technology[D]. Hefei: Hefei University of Technology, 2006. (in Chinese).
    [23] 曹向群. 光栅计量技术[M]. 杭州: 浙江大学出版社, 1992.

    CAO X Q. Grating Measurement Technology[M]. Hangzhou: Zhejiang University Press, 1992. (in Chinese)
    [24] 尚平, 夏豪杰, 费业泰. 衍射式光栅干涉测量系统发展现状及趋势[J]. 光学技术,2011,37(3):313-316.

    SHANG P, XIA H J, FEI Y T. Research status and developing trends of diffraction grating interferometer measurement system[J]. Optical Technique, 2011, 37(3): 313-316. (in Chinese)
    [25] 张善钟. 计量光栅技术[M]. 北京: 机械工业出版社, 1985.

    ZHANG SH ZH. Metrology Grating Technology[M]. Beijing: Mechanical Industry Press, 1985. (in Chinese)
    [26] 祝宏彬, 陈俊雹, 郭冬梅, 等. 零差激光干涉仪的大范围位移测量与精度分析[J]. 光电子技术,2016,36(1):5-11.

    ZHU H B, CHEN J B, GUO D M, et al. Large-range displacement measurement and accuracy analysis of homodyne laser interferometer[J]. Optoelectronic Technology, 2016, 36(1): 5-11. (in Chinese)
    [27] ELLIS J D. Field Guide to Displacement Measuring Interferometry[M]. Bellingham, UK: SPIE Press, 2014.
    [28] FREIDAH J T, CAHILL R F, JOSEPH A A, et al. Passive homodyne optical grating demodulator: principles and performance[J]. Proceedings of SPIE, 1986, 566: 114-121. doi: 10.1117/12.949774
    [29] WU C C, CHENG CH Y, YANG Z Y. Optical homodyne common-path grating interferometer with sub-nanometer displacement resolution[J]. Proceedings of SPIE, 2010, 7791: 779105. doi: 10.1117/12.860513
    [30] GUPTA P, SPEIRS R W, JONES K M, et al. Effect of imperfect homodyne visibility on multi-spatial-mode two-mode squeezing measurements[J]. Optics Express, 2020, 28(1): 652-664. doi: 10.1364/OE.379033
    [31] GAO W, KIMURA A. A three-axis displacement sensor with nanometric resolution[J]. CIRP Annals, 2007, 56(1): 529-532. doi: 10.1016/j.cirp.2007.05.126
    [32] WANG L J, ZHANG M, ZHU Y, et al.. A novel heterodyne grating interferometer system for in-plane and out-of-plane displacement measurement with nanometer resolution[C]. Proceedings of the 29th Annual Meeting of the American Society for Precision Engineering, ASPE, 2014: 173-177.
    [33] SHIMIZU Y, ITO T, LI X H, et al. Design and testing of a four-probe optical sensor head for three-axis surface encoder with a mosaic scale grating[J]. Measurement Science and Technology, 2014, 25(9): 094002. doi: 10.1088/0957-0233/25/9/094002
    [34] LIN J, GUAN J, WEN F, et al. High-resolution and wide range displacement measurement based on planar grating[J]. Optics Communications, 2017, 404: 132-138. doi: 10.1016/j.optcom.2017.03.012
    [35] 金涛, 刘景林, 杨卫, 等. 线性位移台直线度高精密外差干涉测量装置[J]. 光学 精密工程,2018,26(7):1570-1577. doi: 10.3788/OPE.20182607.1570

    JIN T, LIU J L, YANG W, et al. High-precision straightness interferometer for linear moving stage[J]. Optics and Precision Engineering, 2018, 26(7): 1570-1577. (in Chinese) doi: 10.3788/OPE.20182607.1570
    [36] 赵博, 晏磊, 郝德阜. 一种二维光栅干涉仪的研究[J]. 仪器仪表学报,2001,22(3):271-276. doi: 10.3321/j.issn:0254-3087.2001.03.013

    ZHAO B, YAN L, HAO D F. Experimental study about a type of gratings interferometer[J]. Chinese Journal of Scientific Instrument, 2001, 22(3): 271-276. (in Chinese) doi: 10.3321/j.issn:0254-3087.2001.03.013
    [37] 朱煜, 张鸣, 王磊杰, 等. 一种双频光栅干涉仪位移测量系统: 中国, 102937411A[P]. 2013-02-20.

    ZHU Y, ZHANG M, WANG L J, et al.. Double-frequency grating interferometer displacement measurement system: CN, 102937411A[P]. 2013-02-20. (in Chinese).
    [38] 朱煜, 王磊杰, 张鸣, 等. 一种二自由度外差光栅干涉仪位移测量系统: 中国, WO2014/201950A1[P]. 2013-03-20.

    ZHU Y, WANG L J, ZHANG M, et al.. A two-degree-of-freedom heterodyne grating interferometer displacement measurement system: CN, WO2014/201950A1[P]. 2013-03-20. (in Chinese).
    [39] 王芳, 齐向东. 高精度控制光电光栅刻划机的光栅外差干涉仪[J]. 激光技术,2008,32(5):474-476, 526.

    WANG F, QI X D. Grating heterodyne interferometer of high accuracy controlling photoelectric grating ruling engine[J]. Laser Technology, 2008, 32(5): 474-476, 526. (in Chinese)
    [40] 于梅, 刘爱东, 何闻, 等. 衍射光栅外差激光干涉法角振动校准技术研究[J]. 计量学报,2015,36(6):561-564. doi: 10.3969/j.issn.1000-1158.2015.06.01

    YU M, LIU A D, HE W, et al. Angle vibration calibration technology by diffraction grating heterodyne laser interferometry[J]. Acta Metrologica Sinica, 2015, 36(6): 561-564. (in Chinese) doi: 10.3969/j.issn.1000-1158.2015.06.01
    [41] 王磊杰, 张鸣, 朱煜, 等. 超精密外差利特罗式光栅干涉仪位移测量系统[J]. 光学 精密工程,2017,25(12):2975-2985. doi: 10.3788/OPE.20172512.2975

    WANG L J, ZHANG M, ZHU Y, et al. A displacement measurement system for ultra-precision heterodyne Littrow grating interferometer[J]. Optics and Precision Engineering, 2017, 25(12): 2975-2985. (in Chinese) doi: 10.3788/OPE.20172512.2975
    [42] 王磊杰, 张鸣, 朱煜, 等. 面向浸没式光刻机的超精密光学干涉式光栅编码器位移测量技术综述[J]. 光学 精密工程,2019,27(9):1909-1918. doi: 10.3788/OPE.20192709.1909

    WANG L J, ZHANG M, ZHU Y, et al. Review of ultra-precision optical interferential grating encoder displacement measurement technology for immersion lithography scanner[J]. Optics and Precision Engineering, 2019, 27(9): 1909-1918. (in Chinese) doi: 10.3788/OPE.20192709.1909
    [43] 王磊杰, 张鸣, 朱煜, 等. 扫描干涉光刻机的超精密移相锁定系统[J]. 光学 精密工程,2019,27(8):1765-1773. doi: 10.3788/OPE.20192708.1765

    WANG L J, ZHANG M, ZHU Y, et al. Ultra-precision phase-shifting locking system of scanning beam interference lithography tool[J]. Optics and Precision Engineering, 2019, 27(8): 1765-1773. (in Chinese) doi: 10.3788/OPE.20192708.1765
    [44] LEE C B, LEE S K. Multi-degree-of-freedom motion error measurement in an ultraprecision machine using laser encoder-review[J]. Journal of Mechanical Science and Technology, 2013, 27(1): 141-152. doi: 10.1007/s12206-012-1217-6
    [45] HU P CH, CHANG D, TAN J B, et al. Displacement measuring grating interferometer: a review[J]. Frontiers of Information Technology &Electronic Engineering, 2019, 20(5): 631-654.
    [46] 王选择, 郭军, 谢铁邦. 以正交衍射光栅为计量标准器的二维微位移工作台[J]. 光学 精密工程,2003,11(5):492-496.

    WANG X Z, GUO J, XIE T B. 2D-platform with cross diffraction grating as displacement measurement sensor[J]. Optics and Precision Engineering, 2003, 11(5): 492-496. (in Chinese)
    [47] WANG X Z, DONG X H, GUO J, et al. Two-dimensional displacement sensing using a cross diffraction grating scheme[J]. Journal of Optics A:Pure and Applied Optics, 2004, 6(1): 106-111. doi: 10.1088/1464-4258/6/1/019
    [48] LIN C B, YAN SH H, DING D, et al. Two-dimensional diagonal-based heterodyne grating interferometer with enhanced signal-to-noise ratio and optical subdivision[J]. Optical Engineering, 2018, 57(6): 064102.
    [49] 邢旭, 常笛, 谭久彬, 等. 空间分离式外差二自由度平面光栅干涉仪[J]. 光学 精密工程,2019,27(8):1727-1736. doi: 10.3788/OPE.20192708.1727

    XING X, CHANG D, TAN J B, et al. Spatially separated heterodyne grating interferometer for in-plane displacement measurement[J]. Optics and Precision Engineering, 2019, 27(8): 1727-1736. (in Chinese) doi: 10.3788/OPE.20192708.1727
    [50] 朱凡, 谭欣然, 谭久彬, 等. 高分辨力与高输出稳定性自准直系统设计[J]. 光学 精密工程,2016,24(10):109-116.

    ZHU F, TAN X R, TAN J B, et al. Design of high resolution and output stability autocollimation system[J]. Optics and Precision Engineering, 2016, 24(10): 109-116. (in Chinese)
    [51] 崔继文, 刘雪明, 谭久彬. 超精密级二维工作台的自标定[J]. 光学 精密工程,2012,20(9):1960-1966. doi: 10.3788/OPE.20122009.1960

    CUI J W, LIU X M, TAN J B. Self-calibration for 2-D ultra-precision stage[J]. Optics and Precision Engineering, 2012, 20(9): 1960-1966. (in Chinese) doi: 10.3788/OPE.20122009.1960
    [52] HSIEH H L, PAN S W. Three-degree-of-freedom displacement measurement using grating-based heterodyne interferometry[J]. Applied Optics, 2013, 52(27): 6840-6848. doi: 10.1364/AO.52.006840
    [53] HSIEH H L, PAN S W. Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements[J]. Optics Express, 2015, 23(3): 2451-2465. doi: 10.1364/OE.23.002451
    [54] HSIEH H L, CHEN W. Heterodyne Wollaston laser encoder for measurement of in-plane displacement[J]. Optics Express, 2016, 24(8): 8693-8707. doi: 10.1364/OE.24.008693
    [55] 徐敏儿. 基于衍射光栅的高分辨力位移测量系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    XU M E. Research on and high-resolution displacement measurement system based on diffractive grating[D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese).
    [56] 王超群. 具有绝对零位的三自由度光栅位移测量技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    WANG C Q. Research on three-degree-of-freedom grating displacement measurement with absolute zero alignment[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese).
    [57] 邸晶晶. 基于衍射光栅的高精度位移测量系统的设计[D]. 哈尔滨: 哈尔滨工业大学, 2012.

    DI J J. Design of high-precision displacement measurement system based on diffractive grating[D]. Harbin: Harbin Institute of Technology, 2012. (in Chinese).
    [58] 关健. 基于二维光栅的高精度三维位移测量系统[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    GUAN J. High-precision 3-dimensional displacement measurement system based on 2-dimensional grating[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese).
    [59] 魏培培. 基于双光栅干涉的三维位移测量技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    WEI P P. Research on 3-D displacement measurement technology based on double grating interference[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese).
    [60] 温凤. 基于平面光栅的三维位移测头研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    WEN F. The three-dimensional displacement scanner based on planar grating[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese).
    [61] 陈航. 外差式光栅粗/细位移测量系统的研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    CHEN H. Research on heterodyne grating displacement measurement system with high/low displacement resolution[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese).
    [62] WEI P P, LU X, QIAO D CH, et al. Two-dimensional displacement measurement based on two parallel gratings[J]. Review of Scientific Instruments, 2018, 89(6): 065105. doi: 10.1063/1.5024637
    [63] LIN D J, JIANG H, YIN CH Y. Analysis of nonlinearity in a high-resolution grating interferometer[J]. Optics &Laser Technology, 2000, 32(2): 95-99.
    [64] WANG L J, ZHANG M, ZHU Y, et al. Construction and accuracy test of a novel heterodyne grating interferomter system for two-dimensional displacement measurement[J]. Laser, 2013, 89(3): 69.
    [65] LV Q, LIU ZH W, WANG W, et al. Simple and compact grating-based heterodyne interferometer with the Littrow configuration for high-accuracy and long-range measurement of two-dimensional displacement[J]. Applied Optics, 2018, 57(31): 9455-9463. doi: 10.1364/AO.57.009455
    [66] 吕强. 基于衍射光栅的外差Littrow式精密位移测量系统关键技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2019.

    LV Q. Study on key technology of heterodyne grating-based precision displacement measurement system with Littrow structure[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2019. (in Chinese).
    [67] LU Y C, WEI CH L, JIA W, et al. Two-degree-freedom displacement measurement based on a short period grating in symmetric Littrow configuration[J]. Optics Communications, 2016, 380: 382-386. doi: 10.1016/j.optcom.2016.06.016
    [68] KURODA A. Optical displacement measurement system for detecting the relative movement of a machine part: US, 6166817[P]. 2000-12-26.
    [69] AKIHIRO K. Optical displacement measurement system: US, 6407815[P]. 2002-06-18.
    [70] HOLZAPFEL W. Advancements in displacement metrology based on encoder systems[C]. Proceedings of the 23rd Annual ASPE Meeting, 2008.
    [71] THIEL J, SPANNER E. Interferential linear encoder with 270 mm measurement length for nanometrology[C]. Proceedings of the 1st International Conference and general meeting of the European Society for Precision Engineering and Nanotechnology, 1999.
    [72] LOF J, DERKSEN A T A M, HOOGENDAM C A, et al.. Lithographic apparatus and device manufacturing method: US, 6819400B2[P]. 2005-10-21.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  382
  • HTML全文浏览量:  80
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-09
  • 修回日期:  2020-01-21
  • 网络出版日期:  2020-11-10
  • 刊出日期:  2020-12-01

目录

    /

    返回文章
    返回