留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图像辅助汽车制动主缸补偿孔法线测量

赵长福 丁红昌 曹国华 侯翰

赵长福, 丁红昌, 曹国华, 侯翰. 图像辅助汽车制动主缸补偿孔法线测量[J]. 中国光学(中英文), 2021, 14(5): 1212-1223. doi: 10.37188/CO.2020-0219
引用本文: 赵长福, 丁红昌, 曹国华, 侯翰. 图像辅助汽车制动主缸补偿孔法线测量[J]. 中国光学(中英文), 2021, 14(5): 1212-1223. doi: 10.37188/CO.2020-0219
ZHAO Chang-fu, DING Hong-chang, CAO Guo-hua, HOU Han. Image aided measurement of the automotive brake master cylinder compensation hole normal line[J]. Chinese Optics, 2021, 14(5): 1212-1223. doi: 10.37188/CO.2020-0219
Citation: ZHAO Chang-fu, DING Hong-chang, CAO Guo-hua, HOU Han. Image aided measurement of the automotive brake master cylinder compensation hole normal line[J]. Chinese Optics, 2021, 14(5): 1212-1223. doi: 10.37188/CO.2020-0219

图像辅助汽车制动主缸补偿孔法线测量

doi: 10.37188/CO.2020-0219
基金项目: 国家重大科学仪器设备开发项目(No. 2017YFF0105304);吉林省科技发展计划重点研发项目(No. 20200401117GX);吉林省省级产业创新专项资金项目(No. 2018C038-4)
详细信息
    作者简介:

    赵长福(1991—),男,吉林松原人,博士研究生,2015年于长春理工大学获得学士学位,主要从事在线检查,机器视觉和自动控制的研究。E-mail: a15714401502@163.com

    丁红昌(1980—),男,辽宁抚顺人,博士,副教授,博士生导师,分别于2006年、2009年和2016年在长春理工大学获得学士、硕士和博士学位。主要从事在线检测,机器视觉及自动控制方面的研究。E-mail:dinghc@cust.edu.cn

    曹国华(1965—),男,黑龙江桦南人,博士,教授,博士生导师,1988年于东北重型机械学院获得学士学位,1991年于长春光学精密机械学院获得硕士学位,2009年于长春理工大学获得博士学位,现为长春理工大学机电工程学院教授,主要从事在线检测,机电系统控制,机器视觉及自动控制方面的研究。E-mail:caogh@cust.edu.cn

    侯 翰(1994—),男,吉林长春人,博士研究生,在2016年获得长春理工大学的学士学位,同年考取长春理工大学机电工程学院研究生,成为2016级机械工程专业研究生,在2017年申请长春理工大学硕博连读,成为长春理工大学机电工程学院2018级博士研究生。主要从事编码器检测,机电系统控制,自动控制方面的研究。E-mail:345094896@qq.com

  • 中图分类号: TP23

Image aided measurement of the automotive brake master cylinder compensation hole normal line

Funds: Supported by the National Major Scientific Instruments and Equipment Development Project (No. 2017YFF0105304); Key Research and Development Project of Jilin Province Science and Technology Development Plan (No. 20200401117GX); Jilin Province Provincial Industrial Innovation Special Fund Project (No. 2018C038-4)
More Information
  • 摘要: 随着道路上汽车的增多,汽车制动系统的可靠性受到越来越多的关注,基于机器视觉的汽车制动主缸补偿孔参数检测精度,是决定汽车安全性和停车可靠性的关键技术,补偿孔作为汽车制动主缸的重要组成部分,可以起到调节汽车制动主缸储液罐与压力室中制动液的重要作用,其尺寸精度和加工质量受到严格的控制,因此如何准确的获取补偿孔的图像是补偿孔参数检测的首要问题。通过将飞机钻铆孔法线找正的方法引入到图像获取中,将四点微平面法线检测方法与图像处理相结合,实现高效高精度的法线找正。实验表明,本文算法法线找正精度高于0.05°,优于传统检测精度的0.5°,检测时间小于1 s。本文提出的算法在满足精度要求的情况下,算法简单,实时性高,同时具有较好的鲁棒性,满足制动主缸生产工业现场对于检测速度和精度的要求。

     

  • 图 1  制动主缸剖面图

    Figure 1.  Sectional view of a brake master cylinder

    图 2  (a)制动主缸实物图和(b)制动主缸检测系统示意图

    Figure 2.  (a) Real picture of brake master cylinder and (b) schematic diagram of brake master cylinder detection system

    图 3  图像采集和测距系统

    Figure 3.  Image acquisition and ranging system

    图 4  曲面法相测量示意图

    Figure 4.  Schematic diagram of surface normal phase measurement

    图 5  主缸补偿孔处四点微平面。(a)无误差;( b)有误差;( c)图(b)的侧视图

    Figure 5.  Four-point micro-plane at the compensation hole of the main cylinder. (a) Error free; (b) with error; (c) side view of (b)

    图 6  补偿孔法线检测剖面图

    Figure 6.  Normal detection profile of compensation hole

    图 7  补偿孔中心和四边形中心检测图

    Figure 7.  Compensation hole center and quadrilateral center inspection diagram

    图 8  汽车制动主缸补偿孔法线找正流程图

    Figure 8.  Flow chart of normal alignment correction for the compensation hole of an automobile’s brake master cylinder

    图 9  汽车制动主缸补偿孔光电检测系统实物图

    Figure 9.  Prototype of photoelectric detection system for compensation hole in an automobile’s brake master cylinder

    图 10  补偿孔中心位置与四边形中心位置偏差

    Figure 10.  Deviation between the center of the compensation hole and the center of the quadrilateral

    图 11  实验现场图片

    Figure 11.  Experimental site

    图 12  软件界面显示测量结果

    Figure 12.  Measurement results displayed in software interface

    图 13  多次测量汽车制动主缸补偿孔法线找正精度

    Figure 13.  Multiple measurements of the normal alignment accuracy of the compensation hole of the automobile’s brake master cylinder

    图 14  未经过法线找正图像

    Figure 14.  Uncorrected image

    图 15  四点微平面法线找正图像

    Figure 15.  Normal alignment image by four-point microplane method

    图 16  曲面拟合法线找正算法

    Figure 16.  Normal alignment image by curved surface fitting algorithm

    图 17  本文算法图像

    Figure 17.  Normal alignment image by proposed method

    表  1  4种汽车制动主缸补偿方法的孔不圆度、误差大小和时间

    Table  1.   Out-of-roundness, error and time of compensating hole of automobile brake master cylinder by four methods

    Detection parameterThe elliptical coefficient
    A,B,C,D,E,F
    Maximum radius
    ${R_{\max } }/{\rm{pixel}}$
    Minimum radius
    ${R_{\min } }/{\rm{pixel}}$
    Out of roundness
    $\delta {\rm{/}}$%
    The normal
    error /(°)
    Time $t/{\rm{ms} }$
    Taken directly(0.5,0,0.9,−269.8,−437.4,64727)220.284175.1470.22760.4572120
    Micro plane(0.6,0,0.8,−320.1,−401.2,68722)195.672174.6870.11330.1871680
    Surface fitting(0.7,0,0.7,−372.6,−345.2,70916)180.547176.3980.02320.08571276
    Proposed algorithm(0.7,0,0.7,−366.6,−359.8,71460)176.536175.2480.00730.0124710
    下载: 导出CSV
  • [1] YU ZH L, TAN W. Measuring instrument for compensated hole of hydraulic brake master cylinder based on machine vision[C]. Proceedings of 2010 International Conference on Mechanic Automation and Control Engineering, IEEE, 2010.
    [2] IOVENITTI P G, MUTAPCIC E, NAGARAJAH C R. Positioning and orienting a drill axis on a curved surface[J]. The International Journal of Advanced Manufacturing Technology, 2001, 17(7): 484-488. doi: 10.1007/s001700170148
    [3] SHAN Y C, HE N, LI L, et al.. Realization of spindle prompt normal posture alignment for assembly holemaking on large suspended panel[C]. Proceedings of the Third International Conference on Measuring Technology and Mechatronics Automation, IEEE, 2011: 956-960.
    [4] 薛汉杰, 张敬佩. 蒙皮类部件钻孔法向的测量和调整[J]. 航空制造技术,2010(23):60-62, 66. doi: 10.3969/j.issn.1671-833X.2010.23.010

    XUE H J, ZHANG J P. Normal measurement and adjustment for skin drilling[J]. Aeronautical Manufacturing Technology, 2010(23): 60-62, 66. (in Chinese) doi: 10.3969/j.issn.1671-833X.2010.23.010
    [5] DU ZH C, YAO Y B. Measurement method for evaluating normal direction of surface for digital drilling and riveting[C]. SAE 2012 Aerospace Manufacturing and Automated Fastening Conference & Exhibition, SAE, 2012.
    [6] 杨滨赫, 蔡引娣, 文志祥, 等. 长距离激光测量中光束漂移的自动补偿[J]. 光学 精密工程,2020,28(11):2393-2402. doi: 10.37188/OPE.20202811.2393

    YANG B H, CAI Y D, WEN ZH X, et al. Automatic compensation method for beam drift in long-distance laser measurement[J]. Optics and Precision Engineering, 2020, 28(11): 2393-2402. (in Chinese) doi: 10.37188/OPE.20202811.2393
    [7] PHAN N D M P, QUINSAT Y, LARTIGUE C. Optimal scanning strategy for on-machine inspection with laser-plane sensor[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(9-12): 4563-4576. doi: 10.1007/s00170-019-03877-x
    [8] NORGIA M, CAVEDO F, PESATORI A, et al.. Short-range contactless laser sensor[C]. Proceedings of 2017 IEEE International Instrumentation and Measurement Technology Conference, IEEE, 2017.
    [9] 秦现生, 汪文旦, 楼阿莉, 等. 大型壁板数控钻铆的三点快速调平算法[J]. 航空学报,2007,28(6):1455-1460. doi: 10.3321/j.issn:1000-6893.2007.06.031

    QIN X SH, WANG W D, LOU A L, et al. Three-point bracket regulation algorithm for drilling and riveting of aerofoil[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6): 1455-1460. (in Chinese) doi: 10.3321/j.issn:1000-6893.2007.06.031
    [10] 西安交通大学, 西安瑞特快速制造工程研究有限公司. 基于三点微平面式法向检测方法: 中国, CN101957175A[P]. 2011-01-26.

    Xi′an Jiaotong University, Xi'an Ruite Rapid Manufacturing Engineering Research Co., Ltd. Three-point micro-plane-based normal detection method: CN, CN101957175A[P]. 2011-01-26. (in Chinese)
    [11] 公茂震, 袁培江, 王田苗, 等. 航空制孔机器人末端垂直度智能调节方法[J]. 北京航空航天大学学报,2012,38(10):1400-1404.

    GONG M ZH, YUAN P J, WANG T M, et al. Intelligent verticality-adjustment method of end-effector in aeronautical drilling robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(10): 1400-1404. (in Chinese)
    [12] 应高明, 王仲奇, 康永刚, 等. 飞机壁板自动钻铆法向量测量方法研究[J]. 机床与液压,2010,38(23):1-4, 8. doi: 10.3969/j.issn.1001-3881.2010.23.001

    YING G M, WANG ZH Q, KANG Y G, et al. Study on normal vector measurement method in auto-drilling & riveting of aircraft panel[J]. Machine Tool &Hydraulics, 2010, 38(23): 1-4, 8. (in Chinese) doi: 10.3969/j.issn.1001-3881.2010.23.001
    [13] TIAN W, ZHOU W X, ZHOU W, et al. Auto-normalization algorithm for robotic precision drilling system in aircraft component assembly[J]. Chinese Journal of Aeronautics, 2013, 26(2): 495-500. doi: 10.1016/j.cja.2013.02.029
    [14] MITRA N J, NGUYEN A, GUIBAS L. Estimating surface normals in noisy point cloud data[J]. International Journal of Computational Geometry &Applications, 2004, 14(4-5): 261-276.
    [15] ROWELL E, LOUDERMILK E L, SEIELSTAD C, et al. Using simulated 3D surface fuelbeds and terrestrial laser scan data to develop inputs to fire behavior models[J]. Canadian Journal of Remote Sensing, 2016, 42(5): 443-459. doi: 10.1080/07038992.2016.1220827
    [16] EDGEWORTH R M. Applications of surface normal measurements to coordinate metrology[D]. Charlotte: The University of North Carolina at Charlotte, 2000.
    [17] CALDERON F, RUIZ U, RIVERA M. Surface-normal estimation with neighborhood reorganization for 3D reconstruction[C]. Proceedings of the 12th Iberoamerican Congress on Pattern Recognition, Springer, 2007: 321-330.
    [18] 姜春英, 牛祥鑫, 张诚然, 等. 机器人航空铆接的视觉定位方法研究[J]. 航空制造技术,2018,61(4):55-59.

    JIANG CH Y, NIU X X, ZHANG CH R, et al. Research on visual positioning method for robot aeronautical riveting[J]. Aeronautical Manufacturing Technology, 2018, 61(4): 55-59. (in Chinese)
    [19] 毕超, 郝雪, 李迪. 飞机蒙皮法线方向的视觉检测技术研究[J]. 传感技术学报,2020,33(9):1259-1265. doi: 10.3969/j.issn.1004-1699.2020.09.006

    BI CH, HAO X, LI D. Study on vision inspection technology for normal direction of aircraft surfaces[J]. Chinese Journal of Sensors and Actuators, 2020, 33(9): 1259-1265. (in Chinese) doi: 10.3969/j.issn.1004-1699.2020.09.006
    [20] 陈允全, 李泷杲, 黄翔, 等. 基于机器人的飞机大型结构三维自动化检测方法[J]. 航空制造技术,2019,62(10):51-57.

    CHEN Y Q, LI SH G, HUANG X, et al. Three-dimensional automatic detection method for large-scale structure of aircraft based on robot[J]. Aeronautical Manufacturing Technology, 2019, 62(10): 51-57. (in Chinese)
    [21] 梁杰, 毕树生. 制孔执行器的安装方式对机器人性能的影响[J]. 机械工程学报,2010,46(21):13-18. doi: 10.3901/JME.2010.21.013

    LIANG J, BI SH SH. Effects of drill end effector’s mounted method on the robot performance[J]. Journal of Mechanical Engineering, 2010, 46(21): 13-18. (in Chinese) doi: 10.3901/JME.2010.21.013
    [22] 曲巍崴, 董辉跃, 柯映林. 机器人辅助飞机装配制孔中位姿精度补偿技术[J]. 航空学报,2011,32(10):1951-1960.

    QU W W, DONG H Y, KE Y L. Pose accuracy compensation technology in robot-aided aircraft assembly drilling process[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10): 1951-1960. (in Chinese)
    [23] 杜兆才. 数字化钻铆的曲面法向测量方法[J]. 航空制造技术,2011(22):108-111. doi: 10.3969/j.issn.1671-833X.2011.22.023

    DU ZH C. Measurement method for evaluating normal direction of surface for digital drilling and riveting[J]. Aeronautical Manufacturing Technology, 2011(22): 108-111. (in Chinese) doi: 10.3969/j.issn.1671-833X.2011.22.023
    [24] 王红平, 曹国华, 姜涛, 等. 一种汽车制动缸补偿孔形位尺寸检测方法的研究[J]. 机械设计与制造,2009(9):120-122. doi: 10.3969/j.issn.1001-3997.2009.09.049

    WANG H P, CAO G H, JIANG T, et al. A form and position measurement on brake cylinder offset hole of automobile[J]. Machinery Design &Manufacture, 2009(9): 120-122. (in Chinese) doi: 10.3969/j.issn.1001-3997.2009.09.049
    [25] SELS S, RIBBENS B, VANLANDUIT S, et al. Camera calibration using gray code[J]. Sensors, 2019, 19(2): 246. doi: 10.3390/s19020246
    [26] LÓPEZ M, MARÍ R, GARGALLO P, et al.. Deep single image camera calibration with radial distortion[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2019.
    [27] 庞云龙, 刘佳, 王林. BCF-92 POF端面不圆度测量及引用[J]. 光通信技术,2020,44(7):59-62.

    PANG Y L, LIU J, WANG L. BCF-92 POF end face out-of-roundness measurement and application[J]. Optical Communication Technology, 2020, 44(7): 59-62. (in Chinese)
    [28] 陈若珠, 孙岳. 基于最小二乘法的椭圆拟合改进算法研究[J]. 工业仪表与自动化装置,2017(2):35-38, 46. doi: 10.3969/j.issn.1000-0682.2017.02.008

    CHEN R ZH, SUN Y. The study of an improved randomized algorithm for detecting ellipses based on least square approach[J]. Industrial Instrumentation &Automation, 2017(2): 35-38, 46. (in Chinese) doi: 10.3969/j.issn.1000-0682.2017.02.008
    [29] 闫蓓, 王斌, 李媛. 基于最小二乘法的椭圆拟合改进算法[J]. 北京航空航天大学学报,2008,34(3):295-298.

    YAN B, WANG B, LI Y. Optimal ellipse fitting method based on least-square principle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(3): 295-298. (in Chinese)
    [30] 姜涛, 张桂林, 高俊鹏. 制动主缸补偿孔位置检测误差分析与补偿[J]. 光学 精密工程,2020,28(5):1094-1100.

    JIANG T, ZHANG G L, GAO J P. Error analysis and compensation in position measurement of brake master cylinder compensation hole[J]. Optics and Precision Engineering, 2020, 28(5): 1094-1100. (in Chinese)
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  788
  • HTML全文浏览量:  339
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-28
  • 修回日期:  2021-01-07
  • 网络出版日期:  2021-07-13
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!