留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

窄线宽1064 nm光纤激光泵浦高效率中红外3.8 μm MgO:PPLN光参量振荡器

陈柄言 于永吉 吴春婷 金光勇

陈柄言, 于永吉, 吴春婷, 金光勇. 窄线宽1064 nm光纤激光泵浦高效率中红外3.8 μm MgO:PPLN光参量振荡器[J]. 中国光学, 2021, 14(2): 361-367. doi: 10.37188/CO.2020-0169
引用本文: 陈柄言, 于永吉, 吴春婷, 金光勇. 窄线宽1064 nm光纤激光泵浦高效率中红外3.8 μm MgO:PPLN光参量振荡器[J]. 中国光学, 2021, 14(2): 361-367. doi: 10.37188/CO.2020-0169
CHEN Bing-yan, YU Yong-ji, WU Chun-ting, JIN Guang-yong. High efficiency mid-infrared 3.8 μm MgO:PPLN optical parametric oscillator pumped by narrow linewidth 1064 nm fiber laser[J]. Chinese Optics, 2021, 14(2): 361-367. doi: 10.37188/CO.2020-0169
Citation: CHEN Bing-yan, YU Yong-ji, WU Chun-ting, JIN Guang-yong. High efficiency mid-infrared 3.8 μm MgO:PPLN optical parametric oscillator pumped by narrow linewidth 1064 nm fiber laser[J]. Chinese Optics, 2021, 14(2): 361-367. doi: 10.37188/CO.2020-0169

窄线宽1064 nm光纤激光泵浦高效率中红外3.8 μm MgO:PPLN光参量振荡器

doi: 10.37188/CO.2020-0169
基金项目: 国家自然科学基金面上项目(No. 11974060);吉林省中青年科技创新领军人才及团队项目(No. 20190101004JH)
详细信息
    作者简介:

    陈柄言(1988—),男,吉林长春人,博士研究生,2014年于长春理工大学获得硕士学位,现为长春理工大学理学院物理系博士生,主要从事中红外激光器方面的研究。E-mail:chenbycust@163.com

    金光勇(1971—),男,吉林长春人,研究员,2003年于长春理工大学获得博士学位,现为长春理工大学理学院院长,主要从事激光及其与物质相互作用研究。E-mail:jgycust@163.com

  • 中图分类号: O43

High efficiency mid-infrared 3.8 μm MgO:PPLN optical parametric oscillator pumped by narrow linewidth 1064 nm fiber laser

Funds: Supported by National Natural Science Foundation of China (No. 11974060); the Science and Technology Department Project of Jilin Province (No. 20190101004JH)
More Information
  • 摘要: 采用放大1064 nm掺镱光纤激光器作为泵浦源,实现了中红外3.8 μm MgO:PPLN 光参量振荡(OPO)激光输出。在泵浦源中,采用分布式反馈激光器(DFB)作为种子源来实现光纤激光窄线宽的调制,实现线宽2.5 nm到0.1 nm的压缩,最大平均输出功率可达40 W。进一步对不同泵浦线宽条件下中红外3.8 μm MgO:PPLN OPO激光进行研究,最终在泵浦功率为18.1 W、线宽为0.1 nm、重频为1 MHz、脉宽为2 ns时,获得了最高平均输出功率为2.06 W的3822.5 nm激光输出,光-光转换效率为11.38%,光束质量为M2=2.34,提高了窄线宽泵浦对中红外MgO:PPLN OPO激光输出效率。
  • 图  1  不同泵浦光线宽下闲频光线宽展宽与闲频光波长的关系曲线

    Figure  1.  Relationship between idle light broadening and idle wavelength under different pump light linewidthes

    图  2  1064 nm掺镱光纤激光器装置图

    Figure  2.  Schematic diagram of 1064 nm ytterbium-doped fiber laser

    图  3  1064 nm掺镱光纤激光器泵浦的MgO:PPLN OPO实验装置示意图

    Figure  3.  Schematic diagram of MgO:PPLN OPO laser pumped by 1064 nm ytterbium-doped fiber laser

    图  4  1064 nm掺镱光纤激光器输出光谱对比图

    Figure  4.  Comparison of output spectrum of the 1064 nm ytterbium-doped fiber laser

    图  5  不同线宽下1064 nm掺镱光纤激光器的平均输出功率对比图

    Figure  5.  Comparison of output power of the 1064 nm ytterbium-doped fiber laser with different linewidths

    图  6  窄线宽1064 nm掺镱光纤激光光束质量

    Figure  6.  Beam quality of the narrow linewidth 1064 nm ytterbium-doped fiber laser

    图  7  不同线宽1064 nm掺镱光纤激光泵浦MgO:PPLN OPO平均输出功率

    Figure  7.  The output powers of MgO:PPLN OPO pumped by 1064 nm ytterbium-doped fiber laser with different linewidths

    图  8  窄线宽1064 nm掺镱光纤激光泵浦MgO:PPLN OPO输出光谱图

    Figure  8.  The output spectrum of MgO:PPLN OPO pumped by the narrow linewidth 1064 nm ytterbium-doped fiber laser

    图  9  MgO:PPLN OPO 3.8 μm激光输出脉冲序列和脉冲宽度图

    Figure  9.  Pulse sequence and pulse width of the MgO:PPLN OPO 3.8 μm laser

    图  10  窄线宽1064 nm掺镱光纤激光泵浦MgO:PPLN OPO输出光束质量

    Figure  10.  Beam quality of MgO:PPLN OPO pumped by the narrow linewidth 1064 nm ytterbium-doped fiber laser

  • [1] LIPPERT E, FONNUM H, ARISHOLM G, et al. A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator[J]. Optics Express, 2010, 18(25): 26475-16483. doi: 10.1364/OE.18.026475
    [2] LIU J, LIU Q, YAN X, et al. High repetition frequency PPMgOLN mid-infrared optical parametric oscillator[J]. Laser Physics Letters, 2010, 7(9): 630-633. doi: 10.1002/lapl.201010040
    [3] 曾怡帅, 杨友良, 马翠红. 有尘环境多组分气体成分检测系统的设计[J]. 发光学报,2016,37(7):859-865. doi: 10.3788/fgxb20163707.0859

    ZENG Y SH, YANG Y L, MA C H. Design of the detection system of multi component gas composition in dust environment[J]. Chinese Journal of Luminescence, 2016, 37(7): 859-865. (in Chinese) doi: 10.3788/fgxb20163707.0859
    [4] 刘俊池, 李洪文, 王建立, 等. 中波红外整层大气透过率测量及误差分析[J]. 光学 精密工程,2015,23(6):1547-1557. doi: 10.3788/OPE.20152306.1547

    LIU J CH, LI H W, WANG J L, et al. Measurement of mid-infrared total atmospheric transmittance and its error analysis[J]. Optics and Precision Engineering, 2015, 23(6): 1547-1557. (in Chinese) doi: 10.3788/OPE.20152306.1547
    [5] 姚江宏, 刘志伟, 薛亮平, 等. 低阈值温度调谐PPMgLN红外光参量振荡[J]. 发光学报,2007,28(1):18-22. doi: 10.3321/j.issn:1000-7032.2007.01.004

    YAO J H, LIU ZH W, XUE L P, et al. Low-threshold and temperature tunable optical parametrical oscillator based on periodically poled MgO:LiNbO3 crystal[J]. Chinese Journal of Luminescence, 2007, 28(1): 18-22. (in Chinese) doi: 10.3321/j.issn:1000-7032.2007.01.004
    [6] 于永吉, 陈薪羽, 成丽波, 等. 基于MgO:APLN的1.57 μm/3.84 μm连续波内腔多光参量振荡器研究[J]. 物理学报,2015,64(22):224215. doi: 10.7498/aps.64.224215

    YU Y J, CHEN X Y, CHENG L B, et al. Continuous-wave 1.57 µm/3.84 µm intra-cavity multiple optical parametric oscillator based on MgO:APLN[J]. Acta Physica Sinica, 2015, 64(22): 224215. (in Chinese) doi: 10.7498/aps.64.224215
    [7] SHENG Q, DING X, SHANG C, et al. Continuous-wave intra-cavity singly resonant optical parametric oscillator with resonant wave output coupling[J]. Optics Express, 2012, 20(25): 27953-27958. doi: 10.1364/OE.20.027953
    [8] 苏辉, 李志平, 段延敏, 等. 基于掺镁周期极化铌酸锂晶体的内腔单共振连续可调谐光参量振荡器[J]. 光学 精密工程,2013,21(6):1404-1409. doi: 10.3788/OPE.20132106.1404

    SU H, LI ZH P, DUAN Y M, et al. Intra-cavity singly resonant optical parametric oscillator based on magnesium-doped periodically poled lithium niobate[J]. Optics and Precision Engineering, 2013, 21(6): 1404-1409. (in Chinese) doi: 10.3788/OPE.20132106.1404
    [9] 尉鹏飞, 张永昶, 张静, 等. 三镜直腔结构MgO:PPLN高效连续光参量振荡器[J]. 光学 精密工程,2019,27(1):45-50. doi: 10.3788/OPE.20192701.0045

    WEI P F, ZHANG Y CH, ZHANG J, et al. Efficient continuous-wave MgO:PPLN optical parametric oscillator with three-mirror linear cavity[J]. Optics and Precision Engineering, 2019, 27(1): 45-50. (in Chinese) doi: 10.3788/OPE.20192701.0045
    [10] 张雪霞, 葛廷武, 丁星, 等. 分布式抽运连续光纤激光器研究[J]. 发光学报,2016,37(9):1071-1075. doi: 10.3788/fgxb20163709.1071

    ZHANG X X, GE T W, DING X, et al. Study of continuous fiber laser with distributed pump structure[J]. Chinese Journal of Luminescence, 2016, 37(9): 1071-1075. (in Chinese) doi: 10.3788/fgxb20163709.1071
    [11] LI J F, LUO H Y, WANG L L, et al. Tunable Fe2+: ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm[J]. Optics Express, 2015, 23(17): 22362-22370. doi: 10.1364/OE.23.022362
    [12] WEI CH, LUO H Y, ZHANG H, et al. Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber[J]. Laser Physics Letters, 2016, 13(10): 105108. doi: 10.1088/1612-2011/13/10/105108
    [13] JIANG P P, CHEN T, YANG D ZH, et al. A fiber laser pumped dual-wavelength mid-infrared optical parametric oscillator based on aperiodically poled magnesium oxide doped lithium niobate[J]. Laser Physics Letters, 2013, 10(11): 115405. doi: 10.1088/1612-2011/10/11/115405
    [14] MURRAY R T, RUNCORN T H, GUHA S, et al. High average power parametric wavelength conversion at 3.31-3.48 μm in MgO:PPLN[J]. Optics Express, 2017, 25(6): 6421-6430. doi: 10.1364/OE.25.006421
    [15] 尚亚萍. 高功率光纤激光泵浦中红外光学参量振荡器研究[D]. 长沙: 国防科学技术大学, 2017.

    SHANG Y P. High-power fiber lasers pumped mid-infrared optical parametric oscillator[D]. Changsha: National University of Defense Technology, 2017. (in Chinese).
    [16] LIU Q, WANG L, CHEN H L, et al. High repetition rate, 4 μm mid-infrared generation with periodically poled magnesium-oxide-doped lithium niobate based optical parametric oscillator pumped by fiber laser[J]. Applied Physics Express, 2013, 6(5): 052704. doi: 10.7567/APEX.6.052704
    [17] 李港. 激光频率的变换与扩展: 实用非线性光学技术[M]. 北京: 科学出版社, 2005.

    LI G. Conversion and Expansion of Laser Frequency: Practical Nonlinear Optical Technology[M]. Beijing: Science Press, 2005. (in Chinese).
  • 加载中
图(10)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  26
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-15
  • 修回日期:  2020-10-13
  • 网络出版日期:  2021-02-22
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回