留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光焊熔宽的超声检测精度提升

黄治轶 王春生 贺帅 谷晓鹏 董娟 徐国成

黄治轶, 王春生, 贺帅, 谷晓鹏, 董娟, 徐国成. 激光焊熔宽的超声检测精度提升[J]. 中国光学. doi: 10.37188/CO.2020-0149
引用本文: 黄治轶, 王春生, 贺帅, 谷晓鹏, 董娟, 徐国成. 激光焊熔宽的超声检测精度提升[J]. 中国光学. doi: 10.37188/CO.2020-0149
HUANG Zhi-yi, WANG Chun-sheng, HE Shuai, GU Xiao-peng, DONG Juan, XU Guo-cheng. Improvement of the ultrasonic testing accuracy of laser welding fusion width[J]. Chinese Optics. doi: 10.37188/CO.2020-0149
Citation: HUANG Zhi-yi, WANG Chun-sheng, HE Shuai, GU Xiao-peng, DONG Juan, XU Guo-cheng. Improvement of the ultrasonic testing accuracy of laser welding fusion width[J]. Chinese Optics. doi: 10.37188/CO.2020-0149

激光焊熔宽的超声检测精度提升

doi: 10.37188/CO.2020-0149
基金项目: 吉林省科技发展计划项目任务书(No. 20190302044GX)
详细信息
    作者简介:

    黄治轶(1974—),男,辽宁沈阳人,硕士,教授级高级工程师,2005年于吉林大学材料加工工程专业获得硕士学位,现为中车长客轨道车辆股份有限公司工艺规划经理,主要从事轨道车辆车体焊装工艺开发以及焊接质量控制和检测技术方面的研究。焊接质量控制和检测技术方面的研究。E-mail:hzy77151145@126.com

    董娟:董 娟(1983—),女,四川宜宾人,博士,工程师,2019年7月于吉林大学获得博士学位,现为吉林大学材料科学与工程学院职工,主要从事焊接接头的质量控制与检测方面的研究。E-mail:dongjuan@jlu.edu.cn

  • 中图分类号: TG441.7

Improvement of the ultrasonic testing accuracy of laser welding fusion width

Funds: Science and technology development plan of Jilin province (No. 20190302044GX)
More Information
  • 摘要: 搭接激光窄焊缝由于接头尺寸较小,在超声无损检测时,采用传统6bB法对其界面处的熔宽判定存在较大的误差。为了提高检测精度,研究传统6 dB法的检测误差来源,本文采用有限元分析方法,分析了激光焊接头内部入射超声波的传播规律和反射回波特性,构建了基于修正6 dB法的激光焊接头熔宽评估模型,并通过物理实验进行了验证。研究结果表明,上板底面的一次回波幅值可作为能够反映接头内部结构的特征值,当探头中心对应接头内部焊缝熔合线边缘位置时,一次回波幅值的衰减度随上板板厚而变化,据此可根据上板板厚选择衰减度值对传统6 dB法进行修正,从而定量计算接头内部板层接触面处的有效熔宽。实际激光焊接头的超声检测结果证实:采用修正6 dB法求解出激光焊接头的熔宽与物理实验结果吻合良好,对实际生产中超声检测激光焊接头的精度提升提供了极为实用的方法。
  • 图  1  激光焊接头结构图

    Figure  1.  Structure of the laser welding joint

    图  2  激光焊接头截面金相图

    Figure  2.  The metallographic section of the laser welding joint

    图  3  激光焊接头的截面模型。(a)结构及尺寸;(b)求解域设置

    Figure  3.  Section model of the laser welding joint. (a) Structure and dimensions; (b) solution domain setting

    图  4  超声激励信号模型

    Figure  4.  Pumping ultrasonic signal

    图  5  网格划分

    Figure  5.  Mesh generation

    图  6  母材区的超声场分布。(a) t=0.02 μs;(b) t=0.16 μs;(c) t=0.32 μs;(d) t=0.48 μs

    Figure  6.  Ultrasonic distributions at the base metal zone. (a) t=0.02 μs; (b) t=0.16 μs; (c) t=0.32 μs; (d) t=0.48 μs

    图  7  过渡区的超声场分布。(a) t=0.02 μs;(b) t=0.16 μs;(c) t=0.32 μs;(d) t=0.48 μs

    Figure  7.  Ultrasonic distribution at the transitional zone. (a) t=0.02 μs; (b) t=0.16 μs; (c) t=0.32 μs; (d) t=0.48 μs

    图  8  熔合区的超声场分布。(a) t=0.02 μs;(b) t=0.16 μs;(c) t=0.48 μs;(d) t=0.8 μs;(e) t=0.88 μs;(f) t=0.96 μs

    Figure  8.  Ultrasonic distribution at the fusion zone. (a) t=0.02 μs; (b) t=0.16 μs; (c) t=0.48 μs; (d) t=0.8 μs; (e) t=0.88 μs; (f) t=0.96 μs

    图  9  接头不同区域的超声A扫描信号。(a)母材区;(b)过渡区;(c)熔合区

    Figure  9.  Ultrasonic A-scan echoes from different connection zones. (a) base metal zone; (b) transitional zone; (c) fusion zone

    图  10  不同尺寸接头超声A扫描信号一次回波变化规律。(a)不同熔宽尺寸接头U1幅值变化规律;(b)不同上板板厚U1衰减度变化规律

    Figure  10.  The change regularity of an ultrasonic A scan echoes at different joint dimensions: (a) the U1 amplitude changes with different joint widths; (b) the U1 attenuation degree changes with different upper plate thicknesses

    图  11  激光焊接头各区域超声A扫描信号。(a)母材区;(b)母材侧过渡区;(c)焊缝侧过渡区;(d)焊缝连接区

    Figure  11.  Ultrasonic A-scan echoes from different zones of laser welding joints. (a) base metal zone; (b) transition zone at the base metal side; (c) transition zone at the joint side; (d) fusion zone

    图  12  激光焊接头连接状态表征曲线。 (a) 特征量选取;(b) 特征量变化规律

    Figure  12.  Characteristic curve of the connection status of laser welding joints. (a) characteristic number selection; (b) change regulation of the characteristic number

    图  13  激光焊接头熔宽测量结果对比。(a)修正6 dB法、传统6 dB法和金相测量结果对比;(b)修正6 bN法的误差分布

    Figure  13.  Comparation of the joint width measured using different methods. (a) comparation of detection results through the modified 6 dB method, traditional 6 dB method and metallographic section; (b) error distribution of modified 6 dB method

  • LI Y A, LI Y F, WANG Q L, et al. Measurement and defect detection of the weld bead based on online vision inspection[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(7): 1841-1849. doi: 10.1109/TIM.2009.2028222
    韩晓辉, 陈静, 阚盈, 等. 不锈钢薄板非熔透激光搭接焊热源模型[J]. 中国激光,2017,44(5):0502002. doi: 10.3788/CJL201744.0502002

    HAN X H, CHEN J, KAN Y, et al. Heat source model for non-penetration laser lap welding of stainless steel sheets[J]. Chinese Journal of Lasers, 2017, 44(5): 0502002. (in Chinese) doi: 10.3788/CJL201744.0502002
    CAO X, JAHAZI M, Immarigeon J P, et al. A review of laser welding techniques for magnesium alloys[J]. Journal of Materials Processing Technology, 2006, 171(2): 188-204. doi: 10.1016/j.jmatprotec.2005.06.068
    LACKI P, ADAMUS K. Numerical simulation of the electron beam welding process[J]. Computers &Structures, 2011, 89(11-12): 977-985.
    AI Y W, SHAO X Y, JIANG P, et al. Process modeling and parameter optimization using radial basis function neural network and genetic algorithm for laser welding of dissimilar materials[J]. Applied Physics A, 2015, 121(2): 555-569. doi: 10.1007/s00339-015-9408-5
    高向东, 李竹曼, 游德勇, 等. 激光焊匙孔特征的近红外与X射线传感分析[J]. 光学 精密工程,2016,24(10):2400-2407. doi: 10.3788/OPE.20162410.2400

    GAO X D, LI ZH M, YOU D Y, et al. Analysis of laser welding keyhole characteristics based on near-infrared high speed camera and X-ray sensing[J]. Optics and Precision Engineering, 2016, 24(10): 2400-2407. (in Chinese) doi: 10.3788/OPE.20162410.2400
    陈玉华, 戈军委, 刘奋成, 等. TiNi形状记忆合金/钛合金异种材料激光焊[J]. 光学 精密工程,2014,22(8):2075-2080. doi: 10.3788/OPE.20142208.2075

    CHEN Y H, GE J W, LIU F CH, et al. Micro laser welding of dissimilar materials between TiNi shape memory alloy and titanium alloy[J]. Optics and Precision Engineering, 2014, 22(8): 2075-2080. (in Chinese) doi: 10.3788/OPE.20142208.2075
    梁行, 阚盈, 姜云禄, 等. 不锈钢薄板激光搭接焊接头的力学性能[J]. 中国激光,2018,45(6):0602001. doi: 10.3788/CJL201845.0602001

    LIANG H, KAN Y, JIANG Y L, et al. Mechanical properties of laser overlap welded joints of stainless steel sheets[J]. Chinese Journal of Lasers, 2018, 45(6): 0602001. (in Chinese) doi: 10.3788/CJL201845.0602001
    KUO T Y, LIN H C. Effects of pulse level of Nd-YAG laser on tensile properties and formability of laser weldments in automotive aluminum alloys[J]. Materials Science and Engineering:A, 2006, 416(1-2): 281-289. doi: 10.1016/j.msea.2005.10.041
    陈子琴, 高向东, 王琳. 大功率盘形激光焊焊缝背面宽度预测[J]. 光学 精密工程,2017,25(9):2524-2531. doi: 10.3788/OPE.20172509.2524

    CHEN Z Q, GAO X D, WANG L. Weld width prediction of weldment bottom surface in high-power disk laser welding[J]. Optics and Precision Engineering, 2017, 25(9): 2524-2531. (in Chinese) doi: 10.3788/OPE.20172509.2524
    彭进, 李俐群, 张瑞珠, 等. 铝合金电弧预熔丝激光焊工艺特性研究[J]. 激光与光电子学进展,2017,54(6):061404.

    PENG J, LI L Q, ZHANG R ZH, et al. Study on aluminum alloy laser welding with pre-melted liquid filler by arc[J]. Laser &Optoelectronic Progress, 2017, 54(6): 061404. (in Chinese)
    黄怡洁, 高向东, 林少铎. 激光焊接参数对有机玻璃与不锈钢接头力学性能的影响[J]. 中国激光,2017,44(12):1202006. doi: 10.3788/CJL201744.1202006

    HUANG Y J, GAO X D, LIN SH D. Influences of laser welding parameters on mechanical properties of polymethyl methacrylate and stainless-steel joints[J]. Chinese Journal of Lasers, 2017, 44(12): 1202006. (in Chinese) doi: 10.3788/CJL201744.1202006
    DITCHBURN R J, BURKE S K, SCALA C M. NDT of welds: state of the art[J]. NDT &E International, 1996, 29(2): 111-117.
    MANSOUR T M. Ultrasonic inspection of spot welds in thin-gage steel[J]. Materials Evaluation, 1988, 46(5): 650-658.
    LIU J, XU G CH, GU X P, et al. Ultrasonic C-scan detection for stainless steel spot welds based on signal analysis in frequency domain[J]. ISIJ International, 2014, 54(8): 1876-1882. doi: 10.2355/isijinternational.54.1876
    CHERTOV A M, MAEV R G, SEVERIN F M. Acoustic microscopy of internal structure of resistance spot welds[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,, 2007, 54(8): 1521-1529. doi: 10.1109/TUFFC.2007.422
    ZHOU G H, XU G CH, GU X P, et al. Research on evaluating laser welding quality based on two-dimensional array ultrasonic probe[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(5): 1717-1723.
    CHEN ZH H, SHI Y W, JIAO B Q, et al. Ultrasonic nondestructive evaluation of spot welds for zinc-coated high strength steel sheet based on wavelet packet analysis[J]. Journal of Materials Processing Technology, 2009, 209(5): 2329-2337. doi: 10.1016/j.jmatprotec.2008.05.030
    SONG Y K, HUA L, WANG X K, et al. Research on the detection model and method for evaluating spot welding quality based on ultrasonic A-scan analysis[J]. Journal of Nondestructive Evaluation, 2016, 35(1): 4. doi: 10.1007/s10921-015-0319-3
    NAKAHATA K, CHANG J J, TAKAHASHI M, et al. Finite integration technique for coupled acoustic and elastic wave simulation and its application to noncontact ultrasonic testing[J]. Acoustical Science and Technology, 2014, 35(5): 260-268. doi: 10.1250/ast.35.260
    DELRUE S, VAN DEN ABEELE K, BLOMME E, et al. Two-dimensional simulation of the single-sided air-coupled ultrasonic pitch-catch technique for non-destructive testing[J]. Ultrasonics, 2010, 50(2): 188-196. doi: 10.1016/j.ultras.2009.08.005
    BAEK E, YIM H. Numerical modeling and simulation for ultrasonic inspection of anisotropic austenitic welds using the mass-spring lattice model[J]. NDT &E International, 2011, 44(7): 571-582.
  • 加载中
图(14)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  15
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-02-05

目录

    /

    返回文章
    返回