留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电致发光的完全悬空超薄硅衬底氮化镓基蓝光LED器件的制备与表征

蒋成伟 沙源清 袁佳磊 王永进 李欣

蒋成伟, 沙源清, 袁佳磊, 王永进, 李欣. 电致发光的完全悬空超薄硅衬底氮化镓基蓝光LED器件的制备与表征[J]. 中国光学, 2021, 14(1): 153-162. doi: 10.37188/CO.2020-0148
引用本文: 蒋成伟, 沙源清, 袁佳磊, 王永进, 李欣. 电致发光的完全悬空超薄硅衬底氮化镓基蓝光LED器件的制备与表征[J]. 中国光学, 2021, 14(1): 153-162. doi: 10.37188/CO.2020-0148
JIANG Cheng-wei, SHA Yuan-qing, YUAN Jia-lei, WANG Yong-jin, LI Xin. Fabrication and characterization of an LED based on a GaN-on-silicon platform with an ultra-thin freestanding membrane in the blue range[J]. Chinese Optics, 2021, 14(1): 153-162. doi: 10.37188/CO.2020-0148
Citation: JIANG Cheng-wei, SHA Yuan-qing, YUAN Jia-lei, WANG Yong-jin, LI Xin. Fabrication and characterization of an LED based on a GaN-on-silicon platform with an ultra-thin freestanding membrane in the blue range[J]. Chinese Optics, 2021, 14(1): 153-162. doi: 10.37188/CO.2020-0148

电致发光的完全悬空超薄硅衬底氮化镓基蓝光LED器件的制备与表征

doi: 10.37188/CO.2020-0148
基金项目: 中国博士后基金 (No. 2018M640508);江苏省高校自然科学基金 (No. 18KJB510025);南京邮电大学1311人才计划;南京邮电大学国自孵化基金 (No. NY218013)
详细信息
    作者简介:

    蒋成伟(1997—),男,安徽马鞍山人,硕士研究生,2015年于厦门理工学院获得学士学位,现为南京邮电大学通信与工程学院硕士,主要从事氮化物光电子器件方面的研究。E-mail: 707242813@qq.com

    李欣:李 欣(1984—),女,陕西三原人,博士,2013年于西安交通大学获得博士学位,现为南京邮电大学通信与信息工程学院副教授,主要从事硅基氮化镓光电子器件方面的研究。E-mail:lixin1984@njupt.edu.cn

  • 中图分类号: TP394.1;TH691.9

Fabrication and characterization of an LED based on a GaN-on-silicon platform with an ultra-thin freestanding membrane in the blue range

Funds: China Postdoctoral Science Foundation funded project (No. 2018M640508); Natural Science Foundation of the Jiangsu Higher Education Institutions (No. 18KJB510025); 1311 Talent Program of Nanjing University of Posts and Telecommunications; National Self-funding Project of Nanjing University of Posts and Telecommunications (No. NY218013)
More Information
  • 摘要: 为提升硅衬底氮化镓基LED(发光二极管)器件的光电性能和出光效率,本文提出了一种利用背后工艺实现的悬空薄膜蓝光LED器件。结合光刻工艺、深反应离子刻蚀和电感耦合等离子体反应离子刻蚀的背后工艺,制备了发光区域和大部分正负电极区域的硅衬底完全掏空,并减薄大部分氮化镓外延层的悬空薄膜LED器件。对悬空薄膜LED器件进行三维形貌表征,发现LED悬空薄膜表面平坦,变形程度小,证明背后工艺很好地解决了氮化镓外延层和硅衬底之间由于应力释放造成的薄膜变形问题。表征了LED器件的电流电压曲线和电致发光光谱等光电特性,对不同结构、不同发光区域尺寸的LED器件进行对比,发现悬空薄膜LED器件的光电性能和出光效率比普通LED器件更优越,且发光区尺寸变化对LED器件性能的影响更明显。在15 V驱动电压下,与普通LED器件相比,发光区直径为80 μm的悬空LED器件的电流从4.3 mA提升至23.9 mA。在3 mA电流的驱动下,峰值光强提升了约5倍,而发光区直径为120 μm的悬空器件与发光区直径为80 μm的悬空器件相比,出光效率提升更为明显。本研究为发展高性能悬空氮化物薄膜LED器件提供了更多可能性。
  • 图  1  硅衬底氮化镓基悬空薄膜LED器件工艺流程图

    Figure  1.  Fabrication process of the GaN-based LED with an ultra-thin freestanding membrane

    图  2  不同尺寸完全掏空硅衬底的悬空薄膜LED器件的二维形貌正视图。 (a) 发光区直径为80 μm; (b) 发光区直径为120 μm

    Figure  2.  Two-dimensional images of GaN-based LED device with a freestanding membrane when light emitting area’s diameter is (a) 80 μm and (b) 120 μm

    图  3  从背面观察的发光区直径为80 μm的完全掏空硅衬底的悬空薄膜LED器件的三维形貌图

    Figure  3.  Three-dimensional images of an LED device with a freestanding membrane with a light emitting area of 80 μm in diameter (back view)

    图  4  从背面观察的发光区直径为120 μm的完全掏空硅衬底的悬空薄膜LED器件的三维形貌图

    Figure  4.  Three-dimensional images of an LED with a freestanding membrane device with a light emitting area of 120 μm in diameter (back view)

    图  5  不同结构、不同尺寸LED器件的I-V(电流-电压)曲线

    Figure  5.  I-V (current-voltage) curves of LEDs with different structures and sizes

    图  6  (a)普通LED器件的电势和电流密度分布及(b)普通LED器件p电极的电流密度曲线图;(c)掏空硅衬底的悬空LED器件的电势和电流密度分布;(d)掏空硅衬底的悬空LED器件p电极的电流密度曲线图;(e)掏空硅衬底并将外延层减薄至3 μm的悬空LED器件的电势和电流密度分布;(f)掏空硅衬底并将外延层减薄至3 μm的悬空LED器件p电极的电流密度曲线图;(g)掏空硅衬底并将外延层减薄至1 μm的悬空LED器件的电势和电流密度分布;(h)掏空硅衬底并将外延层减薄至1 μm的悬空LED器件p电极的电流密度曲线图。

    Figure  6.  (a) Distribution of the potential and current density and (b) p electrode current density curve of the common LED; (c) distribution of the potential and current density and (d) p electrode current density curve of the LED with a membrane but without a silicon substrate; (e) distribution of potential and current density and (f) p electrode current density curve of the LED with a membrane and a GaN epitaxial layer thinned to 3 μm; (g) distribution of potential and current density and (h) p electrode current density curve of the LED with a membrane and a GaN epitaxial layer thinned to 1 μm

    图  7  发光区直径均为120 μm,结构不同的LED器件在刚好到达开启电压的情况下的发光情况。 (a) 普通LED; (b) 悬空薄膜LED

    Figure  7.  The light-emitting images of the LED with different structures and with light-emitting area’s diameter of 120 μm when its voltage is turned on. (a) Common LED; (b) LED with a freestanding membrane

    图  8  不同尺寸和不同结构的LED器件的电致发光光谱

    Figure  8.  Electroluminescence spectra of the LEDs with different sizes and structures

    图  9  (a) 发光区直径为120 μm的结构不同的LED器件电致发光情况下总光强对比; (b) 发光区直径为120 μm的悬空薄膜LED器件的光功率-电压-电流曲线

    Figure  9.  (a) Comparison of the electroluminescence total light intensities of the LED with different structures when light emitting area’s diameter is 120 μm; (b) L-V-I (light output power-voltage-current) curves of the LED with a 120 μm-diameter light emitting area and with a freestanding membrane

  • [1] 张雨茜, 陆志成, 张伟, 等. 硅基纳米柱GaN-LED的制备与光谱特性分析[J]. 光谱学与光谱分析,2019,39(8):2450-2453.

    ZHANG Y X, LU ZH CH, ZHANG W, et al. Study of the fabrication and spectral analysis of silicon-based nanocolumn GaN-LED[J]. Spectroscopy and Spectral Analysis, 2019, 39(8): 2450-2453. (in Chinese)
    [2] 江孝伟, 赵建伟, 武华. 高光提取效率倒装发光二极管的设计与优化[J]. 激光与光电子学进展,2018,55(9):092302.

    JIANG X W, ZHAO J W, WU H. Design and optimization of flip-chip light-emitting diode with high light extraction efficiency[J]. Laser &Optoelectronics Progress, 2018, 55(9): 092302. (in Chinese)
    [3] 洪国彬, 杨钧杰, 卢廷昌. 蓝紫光氮化镓光子晶体面射型激光器[J]. 中国光学,2014,7(4):559-571.

    HONG G B, YANG J J, LU T CH. Blue-violet GaN-based photonic crystal surface emitting lasers[J]. Chinese Optics, 2014, 7(4): 559-571. (in Chinese)
    [4] ALHASSAN A I, YOUNG E C, ALYAMANI A Y, et al. Reduced-droop green III–nitride light-emitting diodes utilizing GaN tunnel junction[J]. Applied Physics Express, 2018, 11(4): 042101. doi: 10.7567/APEX.11.042101
    [5] WONG M S, NAKAMURA S, DENBAARS S P. Review-progress in high performance III-Nitride micro-light-emitting diodes[J]. ECS Journal of Solid State Science and Technology, 2020, 9(1): 015012. doi: 10.1149/2.0302001JSS
    [6] WU T ZH, SHER C W, LIN Y, et al. Mini-LED and micro-LED: promising candidates for the next generation display technology[J]. Applied Sciences, 2018, 8(9): 1557. doi: 10.3390/app8091557
    [7] ZHANG X, LI P A, ZOU X B, et al. Active matrix monolithic LED micro-display using GaN-on-Si epilayers[J]. IEEE Photonics Technology Letters, 2019, 31(11): 865-868. doi: 10.1109/LPT.2019.2910729
    [8] KOESTER R, SAGER D, QUITSCH W A, et al. High-speed GaN/GaInN nanowire array light-emitting diode on silicon(111)[J]. Nano Letters, 2015, 15(4): 2318-2323. doi: 10.1021/nl504447j
    [9] HORNG R H, WU B R, TIEN C H, et al. Performance of GaN-based light-emitting diodes fabricated using GaN epilayers grown on silicon substrates[J]. Optics Express, 2014, 22(S1): A179-A187. doi: 10.1364/OE.22.00A179
    [10] MONAVARIAN M, RASHIDI A, ARAGON A A, et al. Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes[J]. Applied Physics Letters, 2018, 112(4): 041104. doi: 10.1063/1.5019730
    [11] YANG J, ZHAO D G, JIANG D S, et al. Emission efficiency enhanced by introduction of the homogeneous localization states in InGaN/GaN multiple quantum well LEDs[J]. Journal of Alloys and Compounds, 2016, 681: 522-526. doi: 10.1016/j.jallcom.2016.04.259
    [12] ISHIKAWA H, ASANO K, ZHANG B, et al. Improved characteristics of GaN-based light-emitting diodes by distributed Bragg reflector grown on Si[J]. Physica Status Solidi (A), 2004, 201(12): 2653-2657.
    [13] ISHIKAWA H, JIMBO T, EGAWA T. GaInN light emitting diodes with AlInN/GaN distributed Bragg reflector on Si[J]. Physica Status Solidi C, 2008, 5(6): 2086-2088. doi: 10.1002/pssc.200778441
    [14] ZHANG B J, EGAWA T, ISHIKAWA H, et al. Thin-film InGaN multiple-quantum-well light-emitting diodes transferred from Si (111) substrate onto copper carrier by selective lift-off[J]. Applied Physics Letters, 2005, 86(7): 071113. doi: 10.1063/1.1863412
    [15] DENG D M, YU N S, WANG Y, et al. InGaN-based light-emitting diodes grown and fabricated on nanopatterned Si substrates[J]. Applied Physics Letters, 2010, 96(20): 201106. doi: 10.1063/1.3427438
    [16] CHIU C H, LIN C C, DENG D M, et al. Optical and electrical properties of GaN-Based light emitting diodes grown on micro- and nano-scale patterned Si substrate[J]. IEEE Journal of Quantum Electronics, 2011, 47(7): 899-906. doi: 10.1109/JQE.2011.2114640
    [17] WAKUI M, SAMESHIMA H, HU F R, et al. Fabrication of GaN light emitting diode membrane on Si substrate for MEMS applications[J]. Microsystem Technologies, 2011, 17(1): 109-114. doi: 10.1007/s00542-010-1151-4
    [18] NAKAZATO H, KAWAGUCHI H, IWABUCHI A, et al. Micro fluorescent analysis system integrating GaN-light-emitting-diode on a silicon platform[J]. Lab on a Chip, 2012, 12(18): 3419-3425. doi: 10.1039/c2lc40178a
    [19] LI X, SHI ZH, ZHU G Y, et al. High efficiency membrane light emitting diode fabricated by back wafer thinning technique[J]. Applied Physics Letters, 2014, 105(3): 031109. doi: 10.1063/1.4890859
    [20] 李欣, 沙源清, 蒋成伟, 等. 超薄氮化镓基LED悬空薄膜的制备及表征[J]. 中国光学,2020,13(4):873-883. doi: 10.37188/CO.2019-0192

    LI X, SHA Y Q, JIANG CH W, et al. Fabrication and characterization of ultra-thin GaN-based LED freestanding membrane[J]. Chinese Optics, 2020, 13(4): 873-883. (in Chinese) doi: 10.37188/CO.2019-0192
    [21] KANG B S, KIM S, KIM J, et al. Effect of external strain on the conductivity of AlGaN/GaN high-electron-mobility transistors[J]. Applied Physics Letters, 2003, 83(23): 4845-4847. doi: 10.1063/1.1631054
  • 加载中
图(9)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  65
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 修回日期:  2020-09-11
  • 网络出版日期:  2020-12-25
  • 刊出日期:  2021-01-25

目录

    /

    返回文章
    返回