留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维材料异质结高灵敏度红外探测器

张金月 吕俊鹏 倪振华

张金月, 吕俊鹏, 倪振华. 二维材料异质结高灵敏度红外探测器[J]. 中国光学, 2021, 14(1): 87-99. doi: 10.37188/CO.2020-0139
引用本文: 张金月, 吕俊鹏, 倪振华. 二维材料异质结高灵敏度红外探测器[J]. 中国光学, 2021, 14(1): 87-99. doi: 10.37188/CO.2020-0139
ZHANG Jin-yue, LYU Jun-peng, NI Zhen-hua. Highly sensitive infrared detector based on a two-dimensional heterojunction[J]. Chinese Optics, 2021, 14(1): 87-99. doi: 10.37188/CO.2020-0139
Citation: ZHANG Jin-yue, LYU Jun-peng, NI Zhen-hua. Highly sensitive infrared detector based on a two-dimensional heterojunction[J]. Chinese Optics, 2021, 14(1): 87-99. doi: 10.37188/CO.2020-0139

二维材料异质结高灵敏度红外探测器

doi: 10.37188/CO.2020-0139
基金项目: 国家重点基础研究发展计划(No. 2017YFA0205700, No. 2019YFA0308000);国家自然科学基金资助项目(No. 61774034, No. 91963130)
详细信息
    作者简介:

    张金月(1998—),女,山东德州人,硕士研究生,2019年于曲阜师范大学获得学士学位,主要从事二维材料红外探测器的研究。E-mail:m17853727134@163.com

    吕俊鹏(1986—),男,山东莱阳人,博士,2009年于山东大学光信息科学与技术专业获得学士学位,2013年于新加坡国立大学获得博士学位,主要从事光谱与光电子学研究。E-mail:phyljp@seu.edu.cn

    倪振华(1982—),男,浙江金华人,博士,2003年于上海交通大学获得学士学位,2007年于新加坡国立大学获得博士学位,主要从事光谱与光电子学研究。E-mail:zhni@seu.edu.cn

  • 中图分类号: O47

Highly sensitive infrared detector based on a two-dimensional heterojunction

Funds: Supported by National Basic Research & Development plan of China (No. 2017YFA0205700, No. 2019YFA0308000); National Natural Science Foundation of China (No. 61774034, No. 91963130)
More Information
  • 摘要: 要想实现弱光探测,需要探测器具有高灵敏度。石墨烯、过渡金属硫化物、黑磷等二维材料因具有宽光谱吸收、带隙可调、高载流子迁移率等良好的光学与电学性能,广泛应用于红外探测器的制作,然而这些材料存在弱光吸收、载流子迁移率低、空气稳定性差等问题,制约了其在高灵敏度红外探测领域的应用。同单一的二维材料相比,二维材料异质结不仅具有各单一材料的特点,而且由于两种材料的结合展现出新颖的物理特性,近年来在高灵敏度红外探测领域得到了广泛研究。本文基于影响灵敏度的主要因素,分析总结了提高红外探测器灵敏度的主要策略,回顾了近几年基于二维材料异质结高灵敏度红外探测器的发展,总结了其主要性能指标,最后指出了进一步提升红外探测灵敏度所面临的挑战,从如何平衡探测器响应度与响应速度、大面积二维异质结制备、异质结界面优化利用等方面展望了如何获得综合性能良好的高灵敏度红外探测器以及实现探测器商业应用,以期对高灵敏度红外探测领域的发展提供一定的指导意见。
  • 图  1  基于二维异质结的低暗电流近红外探测器。(a)上图:基于MoS2/石墨烯/WSe2异质结构光电探测器的光学图像[42],比例尺:5 µm;下图:异质结器件示意图[42];(b)光响应度R(左)和比探测率D*(右)在400到2400 nm范围内随波长的变化[42];(c)基于MoS2/Si异质结光电探测器的示意图[43];(d)808 nm激光照射下,光响应度R(左)和比探测率D*(右)随光功率的变化[43]

    Figure  1.  Near-infrared detector based on two-dimensional heterojunction with a low current. (a) Upper panel: optical image of the MoS2/graphene/WSe2 heterostructure photodetector[39], scale bar is 5 µm. Bottom panel: schematic diagram of a heterojunction device[42]. (b) Photoresponsivity R (left) and specific detectivity D*(right) vary with wavelength in the range of 400 to 2400 nm[42]. (c) Schematic diagram of a MoS2/Si heterojunction photodetector[43]. (d) Photoresponsivity R (left) and detectivity D* (right) vary with optical power under 808 nm laser irradiation[43]

    图  2  基于二维异质结的高增益红外探测器

    Figure  2.  Infrared detector with high gain based on a two-dimension heterojunction

    表  1  二维异质结高灵敏红外探测器的主要性能指标

    Table  1.   Key performance parameters of high-sensitivity infrared detectors based on a two-dimensional heterojunction

    探测器类型材料响应波长/nm响应度/(A·W−1)响应时间比探测率/Jones参考文献
    低暗电流探测器MoS2/石墨烯/WSe2400~2400可见光:104
    2400 nm:0.1
    53.6/30.3 µs可见光:1015
    2400 nm:109
    42
    MoS2/Si350~11003/40 µs880 nm:101343
    PtSe2/CdTe200~2000780 nm:0.5068.1/43.6 µs780 nm:4.2×101144
    WS2/GaAs200~1500808 nm:0.52721.8/49.6 µs808 nm: 1.03×101445
    BP/MoS2可见光-中红外3.7/4 µs3.8 µm:1.2×101019
    BP/InSe可见光-中红外20
    MoS2/CdTe200~1700780 nm: 0.036643.7/82.1µs780 nm:6.1×101048
    PtSe2/Si纳米线200~1550780 nm:12.6510.1/19.5 µs780 nm:101349
    石墨烯/碳纳米带300~1100980 nm:0.20968/78 µs980 nm:4.87×101050
    还原氧化石墨烯/MoS2/Si350~4300808 nm:21.82.8/46.6 µs808 nm:3.8×101551
    WS2/Si200~3043980 nm:8.316/29 µs980 nm:4.6×101452
    高光增益探测器石墨烯/PbS量子点可见光-短波近红外600 nm:5×10710/100 ms600 nm:7×101329
    MoS2/HgTe量子点600~2100可见光:5 ×103可见光:6.4×1012
    2 µm:1012
    53
    BP/WSe2400~1600637 nm:103
    1550 nm:0.5
    0.8/0.8 ms637 nm:1014
    1550 nm:1010
    54
    MoS2/PbS量子点400~1500635 nm:6×1050.3~0.4 s635 nm:5×101155
    PbI2/WS2500~1000450 nm:7.1×10424/33 ms450 nm:4.9×101356
    WSe2/In2O3550~1300940 nm:3.5×10420 ms940 nm:1.95×101657
    石墨烯/WS2/石墨烯可见-近红外700 nm:2.5×10240~65 µs700 nm:2.2×101258
    PdSe2/MoS2405−1060010.6 µm:42.174.5/93.1 ms10.6 µm:8.21×10959
    下载: 导出CSV
  • [1] WANG P, XIA H, Li Q, et al. Sensing infrared photons at room temperature: from bulk materials to atomic layers[J]. Small, 2019, 15(46): 1904396. doi: 10.1002/smll.201904396
    [2] WANG F K, ZHANG Y, GAO Y, et al. 2D metal Chalcogenides for IR photodetection[J]. Small, 2019, 15(30): 1901347. doi: 10.1002/smll.201901347
    [3] CHEN H Y, LIU H, ZHANG ZH M, et al. Nanostructured photodetectors: from ultraviolet to terahertz[J]. Advanced Materials, 2016, 28(3): 403-433. doi: 10.1002/adma.201503534
    [4] WANG X D, SHEN H, CHEN Y, et al. Multimechanism synergistic photodetectors with ultrabroad spectrum response from 375 nm to 10 µm[J]. Advanced Science, 2019, 6(15): 1901050. doi: 10.1002/advs.201901050
    [5] ROGALSKI A. HgCdTe infrared detector material: history, status and outlook[J]. Reports on Progress in Physics, 2005, 68(10): 2267-2336. doi: 10.1088/0034-4885/68/10/R01
    [6] LIN CH, ANSELM A, KUO C H, et al. Type-II InAs/InGaSb SL photodetectors[J]. Proceedings of SPIE, 2000, 3948: 133-144. doi: 10.1117/12.382112
    [7] GREIN C H, YOUNG P M, FLATTÉ M E, et al. Long wavelength InAs/InGaSb infrared detectors: optimization of carrier lifetimes[J]. Journal of Applied Physics, 1995, 78(12): 7143-7152. doi: 10.1063/1.360422
    [8] ROGALSKI A. Comparison of the performance of quantum well and conventional bulk infrared photodetectors[J]. Infrared Physics &Technology, 1997, 38(5): 295-310.
    [9] ZHANG Y G, GU Y, TIAN ZH B, et al. Wavelength extended 2.4 µm heterojunction InGaAs photodiodes with InAlAs cap and linearly graded buffer layers suitable for both front and back illuminations[J]. Infrared Physics &Technology, 2008, 51(4): 316-321.
    [10] RICHARDS P L. Bolometers for infrared and millimeter waves[J]. Journal of Applied Physics, 1994, 76(1): 1-24.
    [11] ROGALSKI A. Recent progress in infrared detector technologies[J]. Infrared Physics &Technology, 2011, 54(3): 136-154.
    [12] TAN CH L, CAO X H, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9): 6225-6331. doi: 10.1021/acs.chemrev.6b00558
    [13] JARIWALA D, MARKS T J, HERSAM M C. Mixed-dimensional van der Waals heterostructures[J]. Nature Materials, 2017, 16(2): 170-181. doi: 10.1038/nmat4703
    [14] MIRÓ P, AUDIFFRED M, HEINE T. An atlas of two-dimensional materials[J]. Chemical Society Reviews, 2014, 43(18): 6537-6554. doi: 10.1039/C4CS00102H
    [15] HU Y, CHEN T, WANG X Q, et al. Controlled growth and photoconductive properties of hexagonal SnS2 nanoflakes with mesa-shaped atomic steps[J]. Nano Research, 2017, 10(4): 1434-1447. doi: 10.1007/s12274-017-1525-3
    [16] HU Y, MAO L Y, YUAN X, et al. Controllable growth and flexible optoelectronic devices of regularly-assembled Bi2S3 semiconductor nanowire bifurcated junctions and crosslinked networks[J]. Nano Research, 2020, 13(8): 2226-2232. doi: 10.1007/s12274-020-2841-6
    [17] HU Y, QI ZH H, LU J Y, et al. Van der Waals epitaxial growth and interfacial passivation of two-dimensional single-crystalline few-layer gray arsenic nanoflakes[J]. Chemistry of Materials, 2019, 31(12): 4524-4535. doi: 10.1021/acs.chemmater.9b01151
    [18] WANG X X, HU Y, MO J B, et al. Arsenene: a potential therapeutic agent for acute Promyelocytic Leukaemia cells by acting on nuclear proteins[J]. Angewandte Chemie International Edition, 2020, 59(13): 5151-5158. doi: 10.1002/anie.201913675
    [19] BULLOCK J, AMANI M, CHO J, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature[J]. Nature Photonics, 2018, 12(10): 601-607. doi: 10.1038/s41566-018-0239-8
    [20] GAO A Y, LAI J W, WANG Y J, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures[J]. Nature Nanotechnology, 2019, 14(3): 217-222. doi: 10.1038/s41565-018-0348-z
    [21] CASTELLANOS-GOMEZ A, BARKELID M, GOOSSENS A M, et al. Laser-thinning of MoS2: on demand generation of a single-layer semiconductor[J]. Nano Letters, 2012, 12(6): 3187-3192. doi: 10.1021/nl301164v
    [22] MATTHEISS L F. Band structures of transition-metal-dichalcogenide layer compounds[J]. Physical Review B, 1973, 8(8): 3719-3740. doi: 10.1103/PhysRevB.8.3719
    [23] CASTELLANOS-GOMEZ A. Black phosphorus: narrow gap, wide applications[J]. The Journal of Physical Chemistry Letters, 2015, 6(21): 4280-4291. doi: 10.1021/acs.jpclett.5b01686
    [24] LONG M SH, WANG P, FANG H H, et al. Progress, challenges, and opportunities for 2D material based photodetectors[J]. Advanced Functional Materials, 2019, 29(19): 1803807. doi: 10.1002/adfm.201803807
    [25] NOVOSELOV K S, FAL'KO V I, COLOMBO L, et al. A roadmap for Graphene[J]. Nature, 2012, 490(7419): 192-200. doi: 10.1038/nature11458
    [26] ALLEN M J, TUNG V C, KANER R B. Honeycomb carbon: a review of Graphene[J]. Chemical Reviews, 2010, 110(1): 132-145. doi: 10.1021/cr900070d
    [27] SUN ZH H, LIU ZH K, LI J H, et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity[J]. Advanced Materials, 2012, 24(43): 5878-5883. doi: 10.1002/adma.201202220
    [28] ZHANG Y ZH, LIU T, MENG B, et al. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Nature Communications, 2013, 4(1): 1811. doi: 10.1038/ncomms2830
    [29] KONSTANTATOS G, BADIOLI M, GAUDREAU L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6): 363-368. doi: 10.1038/nnano.2012.60
    [30] GROTEVENT M J, HAIL C U, YAKUNIN S, et al. Nanoprinted quantum dot-graphene photodetectors[J]. Advanced Optical Materials, 2019, 7(11): 1900019. doi: 10.1002/adom.201900019
    [31] KOPPENS F H L, MUELLER T, AVOURIS P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 2014, 9(10): 780-793. doi: 10.1038/nnano.2014.215
    [32] CLIFFORD J P, KONSTANTATOS G, JOHNSTON K W, et al. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors[J]. Nature Nanotechnology, 2009, 4(1): 40-44. doi: 10.1038/nnano.2008.313
    [33] KONSTANTATOS G. Current status and technological prospect of photodetectors based on two-dimensional materials[J]. Nature Communications, 2018, 9(1): 5266. doi: 10.1038/s41467-018-07643-7
    [34] NIKITSKIY I, GOOSSENS S, KUFER D, et al. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor[J]. Nature Communications, 2016, 7(1): 11954. doi: 10.1038/ncomms11954
    [35] CHEN X Q, LIU X L, WU B, et al. Improving the performance of graphene phototransistors using a heterostructure as the light-absorbing layer[J]. Nano Letters, 2017, 17(10): 6391-6396. doi: 10.1021/acs.nanolett.7b03263
    [36] BUSCEMA M, ISLAND J O, GROENENDIJK D J, et al. Photocurrent generation with two-dimensional van der waals semiconductors[J]. Chemical Society Reviews, 2015, 44(11): 3691-3718. doi: 10.1039/C5CS00106D
    [37] TANAKA A, MATSUMOTO S, TSUKAMOTO N, et al. Infrared focal plane array incorporating silicon IC process compatible bolometer[J]. IEEE Transactions on Electron Devices, 1996, 43(11): 1844-1850. doi: 10.1109/16.543017
    [38] MATHER J C. Bolometers: ultimate sensitivity, optimization, and amplifier coupling[J]. Applied Optics, 1984, 23(4): 584-588. doi: 10.1364/AO.23.000584
    [39] 解光勇. 光电探测器噪声特性分析[J]. 信息技术,2008(11):8-10. doi: 10.3969/j.issn.1009-2552.2008.11.003

    XIE G Y. Noise analysis for optoelectronic detector[J]. Information Technology, 2008(11): 8-10. (in Chinese) doi: 10.3969/j.issn.1009-2552.2008.11.003
    [40] 王彦, 袁家虎. 一种提高CCD探测灵敏度的方法[J]. 光电工程,2000,27(6):5-8, 65. doi: 10.3969/j.issn.1003-501X.2000.06.002

    WANG Y, YUAN J H. A method for improving the CCD sensitivity[J]. Opto-Electronic Engineering, 2000, 27(6): 5-8, 65. (in Chinese) doi: 10.3969/j.issn.1003-501X.2000.06.002
    [41] SZE S M, NG K K. Physics of Semiconductor Devices[M]. New York: John Wiley & Sons, 2006.
    [42] LONG M SH, LIU E F, WANG P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure[J]. Nano Letters, 2016, 16(4): 2254-2259. doi: 10.1021/acs.nanolett.5b04538
    [43] WANG L, JIE J SH, SHAO ZH B, et al. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors[J]. Advanced Functional Materials, 2015, 25(19): 2910-2919. doi: 10.1002/adfm.201500216
    [44] WU D, WANG Y G, ZENG L H, et al. Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector[J]. ACS Photonics, 2018, 5(9): 3820-3827. doi: 10.1021/acsphotonics.8b00853
    [45] JIA CH, WU D, WU E P, et al. A self-powered high-performance photodetector based on a MoS2/GaAs heterojunction with high polarization sensitivity[J]. Journal of Materials Chemistry C, 2019, 7(13): 3817-3821. doi: 10.1039/C8TC06398B
    [46] HOLLENHORST J N. Ballistic avalanche photodiodes: ultralow noise avalanche diodes with nearly equal ionization probabilities[J]. Applied Physics Letters, 1986, 49(9): 516-518. doi: 10.1063/1.97106
    [47] JINDAL R P. Approaching fundamental limits on signal detection[J]. IEEE Transactions on Electron Devices, 1994, 41(11): 2133-2138. doi: 10.1109/16.333833
    [48] WANG Y G, HUANG X W, WU D, et al. A room-temperature near-infrared photodetector based on a MoS2/CdTe p-n heterojunction with a broadband response up to 1700 nm[J]. Journal of Materials Chemistry C, 2018, 6(18): 4861-4865. doi: 10.1039/C8TC01237G
    [49] ZENG L H, LIN SH H, LOU ZH H, et al. Ultrafast and sensitive photodetector based on a PtSe2/Silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm[J]. NPG ASIA Materials, 2018, 10(4): 352-362. doi: 10.1038/s41427-018-0035-4
    [50] ZHANG T F, LI ZH P, WANG J ZH, et al. Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction[J]. Scientific Reports, 2016, 6(1): 38569. doi: 10.1038/srep38569
    [51] XIAO P, MAO J, DING K, et al. Solution-processed 3D RGO-MoS2/Pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection[J]. Advanced Materials, 2018, 30(31): 1801729. doi: 10.1002/adma.201801729
    [52] WU E P, WU D, JIA CH, et al. In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared[J]. ACS Photonics, 2019, 6(2): 565-572. doi: 10.1021/acsphotonics.8b01675
    [53] HUO N J, GUPTA S, KONSTANTATOS G. MoS2-HgTe quantum dot hybrid photodetectors beyond 2 µm[J]. Advanced Materials, 2017, 29(17): 1606576. doi: 10.1002/adma.201606576
    [54] YE L, WANG P, LUO W J, et al. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure[J]. Nano Energy, 2017, 37: 53-60. doi: 10.1016/j.nanoen.2017.05.004
    [55] KUFER D, NIKITSKIY I, LASANTA T, et al. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors[J]. Advanced Materials, 2015, 27(1): 176-180. doi: 10.1002/adma.201402471
    [56] QI ZH Y, YANG T F, LI D, et al. High-responsivity two-dimensional p-Pbi2/n-WS2 vertical heterostructure photodetectors enhanced by photogating effect[J]. Materials Horizons, 2019, 6(7): 1474-1480. doi: 10.1039/C9MH00335E
    [57] GUO N, GONG F, LIU J K, et al. Hybrid WSe2-In2O3 phototransistor with ultrahigh detectivity by efficient suppression of dark currents[J]. ACS Applied Materials &Interfaces, 2017, 9(39): 34489-34496.
    [58] YEH C H, CHEN H C, LIN H C, et al. Ultrafast monolayer In/Gr-WS2-Gr hybrid photodetectors with high gain[J]. ACS Nano, 2019, 13(3): 3269-3279. doi: 10.1021/acsnano.8b09032
    [59] LONG M SH, WANG Y, WANG P, et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability[J]. ACS Nano, 2019, 13(2): 2511-2519.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  75
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-12
  • 修回日期:  2020-09-07
  • 网络出版日期:  2020-12-25
  • 刊出日期:  2021-01-25

目录

    /

    返回文章
    返回