留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of the laser vibration measurement techniques for acoustic-to-seismic coupling landmine detection

LI Jin-hui MA Hui YANG Chen-ye ZHANG Xiao-qing LUO Xin-yu WANG Chi

李金辉, 马辉, 杨辰烨, 张小青, 罗欣宇, 王驰. 用于声-地震耦合探雷的激光测振技术研究进展[J]. 中国光学. doi: 10.37188/CO.2020-0134
引用本文: 李金辉, 马辉, 杨辰烨, 张小青, 罗欣宇, 王驰. 用于声-地震耦合探雷的激光测振技术研究进展[J]. 中国光学. doi: 10.37188/CO.2020-0134
LI Jin-hui, MA Hui, YANG Chen-ye, ZHANG Xiao-qing, LUO Xin-yu, WANG Chi. Research progress of the laser vibration measurement techniques for acoustic-to-seismic coupling landmine detection[J]. Chinese Optics. doi: 10.37188/CO.2020-0134
Citation: LI Jin-hui, MA Hui, YANG Chen-ye, ZHANG Xiao-qing, LUO Xin-yu, WANG Chi. Research progress of the laser vibration measurement techniques for acoustic-to-seismic coupling landmine detection[J]. Chinese Optics. doi: 10.37188/CO.2020-0134

用于声-地震耦合探雷的激光测振技术研究进展

doi: 10.37188/CO.2020-0134
详细信息
  • 中图分类号: TN247; TN249

Research progress of the laser vibration measurement techniques for acoustic-to-seismic coupling landmine detection

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 41704123 and 61773249), and the Science and Technology on Near-Surface Detection Laboratory (Grant Nos. TCGZ2018A007 and TCGZ2020C003)
More Information
    Author Bio:

    李金辉(1986—),男,湖南湘潭人,博士,2015年于国防科技大学获得博士学位,现为近地面探测技术重点实验室工程师,主要从事精密测试方面的研究。E-mail:fabry_perot2020@126.com

    杨辰烨(1984—),男,河北怀来人,博士(后),2017年于美国Northeastern University获得博士学位,后于美国麻省理工学院进行博士后研究,现为上海大学机电工程与自动化学院教师,主要从事微纳机电系统(MEMS/NEMS)器件方面的研究。Email:yang_cheny@shu.edu.cn

    Corresponding author: yang_cheny@shu.edu.cn
  • 摘要: 基于地雷独特机械特性和声-地震耦合原理的声-地震耦合探雷技术,在埋设地雷的安全有效探测方面具有广阔的应用前景,但距离实用工程探雷系统的研究还需要做大量工作。其中,声波耦合的地表振动信号非常微弱复杂,如何对其进行精确快速的测量是一个关键难题。本文在论述声-地震耦合探雷技术原理的基础上,对地表振动的非接触激光测量技术(包括激光多普勒干涉技术、电子散斑干涉技术和激光自混合干涉技术)进行综述分析,并探索电子剪切散斑干涉技术用于声-地震耦合探雷的可行性。
  • Figure  1.  Schematic diagram of acoustic-to-seismic coupling for landmine detection.

    Figure  2.  Schematic diagram of a soil-landmine resonance system model.

    Figure  3.  Schematic diagram of acoustic-to-seismic coupling landmine detection experimental system.

    Figure  4.  Typical set-up of the acoustic landmine detection system based on LDV[30].

    Figure  5.  Experimental measurement results based on a single-beam LDV[30]. (a) A scanned patch of 1 m × 1 m. (b) 2-D color map. (c) 3-D color map.

    Figure  6.  Measured magnitude spectra of velocity functions at points A, B, C and D from Fig. 5(a)[30].

    Figure  7.  Trace of a moving beam when scanning an area[32].

    Figure  8.  Scanning results of the single-beam and the moving beam LDVs[32]. (a) Scanning results of the single-beam LDV. (b) Scanning results at 0.4 m/s moving speed. (c) Scanning results at 0.8 m/s moving speed. (d) Scanning results at 1.6 m/s moving speed.

    Figure  9.  Multi-beam LDV[35]. (a) Schema of the experimental setup. 1- scanning multi-beam LDV, 2-loudspeaker, 3-signal generator, 4-shakers, 5-landmine, 6-PC/signal processor. (b) Multi-beam LDV mounted on a forklift. 1- MB-LDV, 2- loudspeaker array, 3- shakers.

    Figure  10.  Anti-tank landmine VS2.2 buried 15 cm deep at different scanning speeds[35]. (a) 10 cm/s. (b) 20 cm/s. (c) 50 cm/s. (d) 100 cm/s.

    Figure  11.  Schema of ESPI for measurement of out-of-plane vibrations[44].

    Figure  12.  Diagram of the experimental setup based on ESPI[44].

    Figure  13.  Spatial maps of buried landmines[44]. (a) Fringe pattern. (b) Grayscale image.

    Figure  14.  Schematic diagram of the laser self-mixing vibrometer.

    Figure  15.  Position of buried objects[50].

    Figure  16.  Color maps of the test-bed[50]. (a) Two-dimensional (2D) color map. (b) Three-dimensional (3D) color map, derived from (a).

    Figure  17.  Experimental system of acoustic-optic landmine detection based on ESSPI.

    Figure  18.  Interference fringes at different decibel levels. (a) Type 69 anti-tank plastic landmine. (b) Interference fringe at 100 dB. (c) Interference fringe at 95 dB. (d) Interference fringe at 100 dB.

    Table  1.   Characteristics of the above Laser Vibrometers

    Laser Vibrometers
    LDVESPILaser self-mixing vibrometer
    Displacement sensitivity1 nm0.1 μm0.01 nm
    Types of detectable landminesmetal and non-metal landminesmetal and non-metal landminesmetal and non-metal landmines
    Response speedneed to collect multiple points of vibration signals for further processingreal-time display of interference fringesneed to collect multiple points of vibration signals for further processing
    Measurement area at one timesingle or multiple points50×50 cmsingle point
    Influence of environmentsusceptible to vegetationsusceptible to the vibration of the surrounding environmentsusceptible to vegetation
    Structurecomplicated and large in sizecomplicated and large in sizesimple optical path and small in size
    下载: 导出CSV

    Table  2.   Advantages and disadvantages of the above Laser Vibrometers

    Laser VibrometersAdvantagesDisadvantages
    LDVhigh sensitivity; high measurement accuracy; easy to
    control large-area laser beam scanning
    long scanning time; susceptible to vegetation;
    the structure is very complicated
    ESPIAchieves fast scanning detection of a large area;
    real-time display of interference fringes
    high vibration isolation requirements; the structure is complicated and the size is large
    Laser self-mixing vibrometersimple optical path; great stability; high sensitivity
    and high measurement accuracy
    long scanning time; susceptible to vegetation
    下载: 导出CSV
  • ZUCCHETTI M, KHODOR M, MAKKI I, et al.. Landmines. Crisis, legacy, international and local action[C]. Proceedings of the 2017 First International Conference on Landmine: Detection, Clearance and Legislations, LDCL, 2017.(查阅所有网上资料, 未能确认本条文献修改是否正确, 请联系作者确认)
    WU ZH Q, ZHANG Y L, WANG CH, et al. 3D characteristic diagram of acoustically induced surface vibration with different landmines buried[J]. Transactions of Tianjin University, 2016, 22(4): 367-373. doi: 10.1007/s12209-016-2759-y
    BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168-178. doi: 10.1121/1.1908239
    BIOT M A. Theory of propagation of elastic waves in a fluid‐saturated porous solid. II. Higher frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 179-191. doi: 10.1121/1.1908241
    BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 1962, 33(4): 1482-1498. doi: 10.1063/1.1728759
    LI H Y, WANG Y J, CHANG H W, et al. Acoustic impedance and its application in seismo-acoustic landmines detection models[J]. Journal of Coastal Research, 2020, 99(SI): 92-98.
    SABATIER J M, KORMAN M S, XIANG N. Linear and nonlinear acoustic velocity profiles over buried land mines[J]. Proceedings of SPIE, 2002, 4742: 695-700. doi: 10.1117/12.479141
    DONSKOY D. Nonlinear seismo-acoustic landmine detection[J]. The Journal of the Acoustical Society of America, 2008, 123(5): 3042-3043.
    YU S H, GANDHE A, WITTEN T R, et al. Physically based method for automatic mine detection using acoustic data: a transmission zero approach[J]. Proceedings of SPIE, 2002, 4742: 701-708. doi: 10.1117/12.479143
    ZAGRAI A, DONSKOY D, EKIMOV A. Structural vibrations of buried land mines[J]. The Journal of the Acoustical Society of America, 2005, 118(6): 3619-3628. doi: 10.1121/1.2108754
    WANG CH, LIU ZH G, LI X F, et al. Technology for acoustic landmine detection based on relative acoustic-to-seismic coupling ratio[J]. Journal of Tianjin University, 2008, 41(6): 745-750. (in Chinese
    WANG CH, YU Y J, LI X F, et al. Analysis of earth-mine resonance model[J]. Acta Physica Sinica, 2010, 59(9): 6319-6325. (in Chinese doi: 10.7498/aps.59.6319
    WANG CH, YU Y J, LI X F. An acoustic-to-seismic coupling based landmines detection system in lab-scale experimental environment[J]. Journal of Tianjin University, 2011, 44(1): 79-84. (in Chinese
    WANG CH, ZHOU Y Q, SHEN G W, et al. Numerical analysis of the resonance mechanism of the lumped parameter system model for acoustic mine detection[J]. Chinese Physics B, 2013, 22(12): 124601. doi: 10.1088/1674-1056/22/12/124601
    DING W, WU W W, WANG CH, et al. Propagation characteristics of seismic waves in shallow soil with the unsaturated three-phase poroelastic model[J]. Acta Physica Sinica, 2014, 63(22): 224301. (in Chinese doi: 10.7498/aps.63.224301
    SONG Z Y, ZHANG Y L, WANG CH, et al. Experimental measurement of acoustically induced surface vibration with different soil conditions[J]. Advances in Manufacturing, 2016, 4(3): 278-285. doi: 10.1007/s40436-016-0153-6
    WU ZH Q, MA H, WANG CH, et al. Numerical analysis of a sensorized prodder for landmine detection by using its vibrational characteristics[J]. Applied Sciences, 2019, 9(4): 744. doi: 10.3390/app9040744
    ZHANG Q K, ZHONG SH C, LIN J W, et al. High-performance optical coherence velocimeter: theory and applications[J]. Optics Express, 2019, 27(2): 965-979. doi: 10.1364/OE.27.000965
    LIBBEY B, PEREA J. Doppler-vibrometer landmine-detection system operated from a moving vehicle[J]. Proceedings of SPIE, 2019, 11012: 110120W.
    MARTIN J S, LARSON G D, SCOTT JR W R. An investigation of surface-contacting sensors for the seismic detection of buried landmines[J]. The Journal of the Acoustical Society of America, 2006, 120(5): 2676-2685. doi: 10.1121/1.2345911
    BULLETTI A, BORGIOLI G, CALZOLAI M, et al. Acoustoseismic method for buried-object detection by means of surface-acceleration measurements and audio facilities[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(8): 3134-3138. doi: 10.1109/TGRS.2010.2044888
    LARSON G D, MARTIN J S, SCOTT JR W R, et al. Detection of buried landmines using seismic waves and microphones[J]. Proceedings of SPIE, 2005, 5794: 655-664. doi: 10.1117/12.603861
    LARSON G D, MARTIN J S, SCOTT JR W R. Investigation of microphones as near-ground sensors for seismic detection of buried landmines[J]. The Journal of the Acoustical Society of America, 2007, 122(1): 253-258. doi: 10.1121/1.2743155
    SCOTT W R, MARTIN J S, LARISON G D. Experimental model for a seismic landmine detection system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(6): 1155-1164. doi: 10.1109/36.927432
    LEE S H, SCOTT JR W R. A focused radar antenna for use in seismic mine detection systems[J]. Radio Science, 2004, 39(4): RS4S01.
    PETCULESCU A G, SABATIER J M. Doppler ultrasound techniques for landmine detection[J]. Proceedings of SPIE, 2004, 5414: 30-34.
    RAJESH K R, MURALI R, MOHANACHANDRAN R. Advanced acousto-ultrasonic landmine detector for humanitarian mine sweeping[C]. Proceedings of 2011 IEEE Global Humanitarian Technology Conference, IEEE, 2011.
    BÉRES M, PARIPÁS B. Measurements of vibration by laser doppler method in the course of drilling[C]. Proceedings of the 2nd ed Vehicle and Automotive Engineering, Springer, 2018.
    LV T, HAN X Y, WU SH S, et al. The effect of speckles noise on the laser Doppler vibrometry for remote speech detection[J]. Optics Communications, 2019, 440: 117-125. doi: 10.1016/j.optcom.2019.02.014
    XIANG N, SABATIER J M. An experimental study on antipersonnel landmine detection using acoustic-to-seismic coupling[J]. The Journal of the Acoustical Society of America, 2003, 113(3): 1333-1341. doi: 10.1121/1.1543554
    SABATIER J M, XIANG N. An investigation of acoustic-to-seismic coupling to detect buried antitank landmines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(6): 1146-1154. doi: 10.1109/36.927429
    XIANG N, SABATIER J M. Acoustic-to-seismic landmine detection using a continuously scanning laser Doppler vibrometer[J]. Proceedings of SPIE, 2003, 5089: 591-595. doi: 10.1117/12.487535
    LAL A K, ZHANG H SH, ARANCHUK V, et al. Multiple-beam LDV system for buried landmine detection[J]. Proceedings of SPIE, 2003, 5089: 579-590. doi: 10.1117/12.487154
    ARANCHUK V, LAL A K, ZHANG H SH, et al. Acoustic sensor for landmine detection using a continuously scanning multibeam LDV[J]. Proceedings of SPIE, 2004, 5415: 61-69. doi: 10.1117/12.541562
    ARANCHUK V, SABATIER J M, LAL A K, et al. Multi-beam laser Doppler vibrometry for acoustic landmine detection using airborne and mechanically coupled vibration[J]. Proceedings of SPIE, 2005, 5794: 624-631. doi: 10.1117/12.603512
    LAL A, ARANCHUK S, DOUSHKINA V, et al. Advanced LDV instruments for buried landmine detection[J]. Proceedings of SPIE, 2006, 6217: 621715. doi: 10.1117/12.668927
    ARANCHUK V, SABATIER J M, BURGETT R D, et al. Fast acoustic landmine detection using multiple beam laser Doppler vibrometry[J]. The Journal of the Acoustical Society of America, 2008, 123(5): 3043.
    BURGETT R, SABATIER J M, ARANCHUK V. Carrier tracking and tunable passband filters for TDM-LDV mine detection[J]. Proceedings of SPIE, 2010, 7664: 76641X. doi: 10.1117/12.853105
    BURGETT R, ARANCHUK V, ARANCHUK I. Experimental investigation of buried landmine detection using time division multiplexing of multibeam laser Doppler vibrometer channels[J]. Proceedings of SPIE, 2012, 8357: 83570H.
    PADGHAN P P, PANDE V D, INGLE P U, et al. Measurement of nanoscale surface roughness using electronic speckle pattern interferometer[J]. AIP Conference Proceedings, 2019, 2100(1): 020062.
    SCHWARZ A, SHEMER A, OZANA N, et al.. Laser vibrometer interferometry for speckle patterns tracking systems[C]. Proceedings of 2017 Conference on Lasers and Electro-Optics, IEEE, 2017.
    RITTER K, UNGLAUB J, THIELE K. Untersuchung der mikroschädigung in baustahl mit ESPI[J]. Bautechnik, 2020, 97(3): 180-187. doi: 10.1002/bate.201800006
    PAGLIARULO V, FERRARO P. New applications of electronic speckle pattern interferometry in novel materials and structures[J]. Proceedings of SPIE, 2019, 11059: 1105910.
    SABATIER J M, ARANCHUK V, ALBERTS II W C. Rapid high-spatial-resolution imaging of buried landmines using ESPI[J]. Proceedings of SPIE, 2004, 5415: 14-20. doi: 10.1117/12.540517
    WANG X F, SONG X M, TAN R X, et al. Micro-vibration measurement based on current modulation and secondary feedback self-mixing interference technology[J]. Optical Review, 2019, 26(2): 241-246. doi: 10.1007/s10043-018-00489-w
    ZHANG Z H, SUN L Q, LI CH W, et al. Laser self-mixing interferometry for micro-vibration measurement based on inverse Hilbert transform[J]. Optical Review, 2020, 27(1): 90-97. doi: 10.1007/s10043-019-00568-6
    HE G, GORDENKER R, WOO J K, et al.. Laser self-mixing interferometry for precision displacement measurement in resonant gyroscopes[C]. Proceedings of 2019 IEEE International Symposium on Inertial Sensors and Systems, IEEE, 2019.
    ZHANG Z H, JIANG CH L, SHEN L Q, el al. Vibration measurement based on the local maximum detection algorithm for laser self-mixing interferometry[J]. IEEE Access, 2020, 8: 63462-63469. doi: 10.1109/ACCESS.2020.2984282
    WANG CH, DUAN N Y, WU ZH Q, et al. Method for detecting multi-modal vibration characteristics of landmines[J]. Instrumentation, 2018, 5(4): 39-45.
    WU ZH Q, DUAN N Y, WANG CH, et al. Experimental study on acoustic-to-seismic landmine detection based on laser self-mixing interferometer[J]. Proceedings of SPIE, 2018, 108271: 108271W.
    JING CH, LIU ZH L, GUO CH L, el al.. Vibration measurement with electrical speckle shearing pattern interferometry[C]. Proceedings of 2016 International Conference on Identification, Information and Knowledge in the Internet of Things, IEEE, 2016.
    MA Y H, JIANG H Y, DAI M L, et al. Cantilevered plate vibration analysis based on electronic speckle pattern interferometry and digital shearing speckle pattern interferometry[J]. Acta Optica Sinica, 2019, 39(4): 0403001. (in Chinese doi: 10.3788/AOS201939.0403001
    WANG Y H, LYU Y B, GAO X Y, et al. Research progress in shearography and its applications[J]. Chinese Optics, 2017, 10(3): 300-309. (in Chinese doi: 10.3788/co.20171003.0300
    ASEMANI H, SOLTANI N. Application of electronic speckle pattern shearing interferometry with high-speed camera in vibration analysis of piezoelectric transducer[J]. International Journal of Applied Mechanics, 2019, 11(6): 1950056. doi: 10.1142/S175882511950056X
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  39
  • PDF下载量:  9
  • 被引次数: 0
出版历程

目录

    /

    返回文章
    返回