留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大孔径静态干涉成像光谱仪径向畸变导致的谱线偏移误差的校正

安玲坪 王爽 张耿 李娟 刘学斌

安玲坪, 王爽, 张耿, 李娟, 刘学斌. 大孔径静态干涉成像光谱仪径向畸变导致的谱线偏移误差的校正[J]. 中国光学(中英文), 2021, 14(2): 382-389. doi: 10.37188/CO.2020-0084
引用本文: 安玲坪, 王爽, 张耿, 李娟, 刘学斌. 大孔径静态干涉成像光谱仪径向畸变导致的谱线偏移误差的校正[J]. 中国光学(中英文), 2021, 14(2): 382-389. doi: 10.37188/CO.2020-0084
AN Ling-ping, WANG Shuang, ZHANG Geng, LI Juan, LIU Xue-bin. Corrective method for spectral offset error caused by radial distortion in the large aperture static imaging spectrometer[J]. Chinese Optics, 2021, 14(2): 382-389. doi: 10.37188/CO.2020-0084
Citation: AN Ling-ping, WANG Shuang, ZHANG Geng, LI Juan, LIU Xue-bin. Corrective method for spectral offset error caused by radial distortion in the large aperture static imaging spectrometer[J]. Chinese Optics, 2021, 14(2): 382-389. doi: 10.37188/CO.2020-0084

大孔径静态干涉成像光谱仪径向畸变导致的谱线偏移误差的校正

doi: 10.37188/CO.2020-0084
基金项目: 国家重点研发计划项目(No. 2018YFB0504900,No. 2018YFB0504901)
详细信息
    作者简介:

    安玲坪(1996—),女,山西忻州人,博士研究生,2018年于太原理工大学获得学士学位,主要从事光谱成像仪器定量化技术研究。E-mail:anlingping@opt.cn

    王 爽(1980—),男,黑龙江东宁人,博士,研究员,硕士生导师,2002年、2006年于北京理工大学分别获得学士、硕士学位,2014年于中国科学院西安光学精密机械研究所获得博士学位,主要从事光谱成像理论与仪器开发、光谱成像数据处理与定量化研究。E-mail:wangshuang@opt.ac.cn

  • 中图分类号: TP751.1

Corrective method for spectral offset error caused by radial distortion in the large aperture static imaging spectrometer

Funds: Supported by National Key R&D Program of China (No. 2018YFB0504900, No. 2018YFB0504901)
More Information
  • 摘要: 为提高大孔径静态干涉成像光谱仪在视场增大时的光谱定标精度,减小径向畸变对光谱精度的影响,本文提出一种基于光谱——畸变关联模型的光谱定标系数修正方法,给出了波数和波长修正公式。采用594.1 nm和632.8 nm气体激光器对成像光谱仪进行了光谱成像实验,并对数据进行了处理和分析。结果表明,当存在0.3%的桶形畸变时,边缘视场的反演光谱存在2 nm左右的偏移,利用本文方法校正后,谱线偏移减小到0.1 nm左右。该方法仅需根据镜头畸变参数即可完成修正,简化了实验室光谱定标流程,提高了工作效率,也可应用于星载干涉光谱数据的在轨参数校正。

     

  • 图 1  LASIS结构示意图

    Figure 1.  Schematic diagram of LASIS structure

    图 2  LASIS干涉原理示意图

    Figure 2.  Schematic diagram of LASIS interference

    图 3  径向畸变效果图

    Figure 3.  Diagram of the radial distortion effects

    图 4  仿真试验流程图

    Figure 4.  Flow chart of the simulation experiment

    图 5  Matlab模拟结果

    Figure 5.  Matlab simulation results

    图 6  光谱定标实验示意图

    Figure 6.  Schematic diagram of the spectral calibration experiment

    图 7  激光干涉图

    Figure 7.  Interferogram of the lasers

    图 8  激光三视场归一化反演光谱

    Figure 8.  The normalized inversion spectra of the three fields of view of the lasers

    图 9  光谱定标误差校正

    Figure 9.  Correction of spectral calibration

    图 10  氧气红外吸收带

    Figure 10.  Absorption band of oxygen in infrared wavelengths

    表  1  激光中心波长对比

    Table  1.   Comparison of the lasers’ center wavelength

    像元中心波长/nm
    参考值$ {\lambda }_{0} $校正前$ \lambda $误差$ \left|\lambda -{\lambda }_{0}\right| $校正后$ \lambda {'} $误差$ \left|\lambda {'}-{\lambda }_{0}\right| $
    100594.1595.57621.4762594.00970.0903
    400594.76030.6603594.01260.0874
    1000594.13420.0342594.12600.0260
    1100594.13420.0342594.13280.0328
    1700594.71860.6186594.05940.0406
    2000595.45061.3506594.01360.0864
    100632.8634.54291.7429632.82210.0221
    400633.56930.7693632.73680.0632
    1000632.83510.0351632.82210.0221
    1100632.81140.0114632.81100.0110
    1700633.37960.5796632.71070.0893
    2000634.11511.3151632.63370.1663
    下载: 导出CSV
  • [1] 刘红婕, 王凤蕊, 耿峰, 等. 荧光成像技术无损探测光学元件亚表面缺陷[J]. 光学 精密工程,2020,28(1):50-59. doi: 10.3788/OPE.20202801.0050

    LIU H J, WANG F R, GENG F, et al. Nondestructive detection of optics subsurface defects by fluorescence image technique[J]. Optics and Precision Engineering, 2020, 28(1): 50-59. (in Chinese) doi: 10.3788/OPE.20202801.0050
    [2] 何志平, 李春来, 吕刚, 等. 月球表面原位光谱探测技术研究与应用(特约)[J]. 红外与激光工程, 2020, 49(5): 62-69.

    HE ZH P, LI CH L, LÜ G, et al.. Research and applications of In-Situ lunar surface spectral detection technology(Invited)[J]. Infrared and Laser Engineering, 2020, 49(5): 62-69. (in Chinese)
    [3] 郑光辉, 焦彩霞, 上官晨曦, 等. 基于成像光谱技术的土壤剖面发生层划分初探[J]. 光谱学与光谱分析,2019,39(3):882-885.

    ZHENG G H, JIAO C X, SHANGGUAN CH X, et al. Horizon classification in soil profile using imaging spectroscopy[J]. Spectroscopy and Spectral Analysis, 2019, 39(3): 882-885. (in Chinese)
    [4] 朱梦远, 杨红兵, 李志伟. 高光谱图像和叶绿素含量的水稻纹枯病早期检测识别[J]. 光谱学与光谱分析,2019,39(6):1898-1904.

    ZHU M Y, YANG H B, LI ZH W. Early detection and identification of rice sheath blight disease based on hyperspectral image and chlorophyll content[J]. Spectroscopy and Spectral Analysis, 2019, 39(6): 1898-1904. (in Chinese)
    [5] 谭翠媚, 许廷发, 马旭, 等. 图-谱结合的压缩感知高光谱视频图像复原[J]. 中国光学,2018,11(6):949-957. doi: 10.3788/co.20181106.0949

    TAN C M, XU T F, MA X, et al. Graph-spectral hyperspectral video restoration based on compressive sensing[J]. Chinese Optics, 2018, 11(6): 949-957. (in Chinese) doi: 10.3788/co.20181106.0949
    [6] MAILHES C, VERMANDE P, CASTANIE F. Spectral image compression[J]. Journal of Optics, 1990, 21(3): 121-132. doi: 10.1088/0150-536X/21/3/006
    [7] LUCEY P G, HORTON K A, WILLIAMS T J, et al. SMIFTS: a cryogenically cooled, spatially modulated imaging infrared interferometer spectrometer[J]. Proceedings of SPIE, 1993, 1937: 130-141. doi: 10.1117/12.157050
    [8] 相里斌, 赵葆常, 薛鸣球. 空间调制干涉成像光谱技术[J]. 光学学报,1998,18(1):18-22. doi: 10.3321/j.issn:0253-2239.1998.01.004

    XIANG L B, ZHAO B CH, XUE M Q. Spatially modulated imaging interferometry[J]. Acta Optica Sinica, 1998, 18(1): 18-22. (in Chinese) doi: 10.3321/j.issn:0253-2239.1998.01.004
    [9] 高泽东, 郝群, 刘宇, 等. 高光谱成像与应用技术发展[J]. 计测技术,2019,39(4):24-34.

    GAO Z D, HAO Q, LIU Y, et al. Hyperspectral imaging and application technology development[J]. Metrology &Measurement Technology, 2019, 39(4): 24-34. (in Chinese)
    [10] 吕群波, 相里斌, 姚涛, 等. 光学畸变对大孔径静态干涉成像光谱仪影响的建模与仿真[J]. 光谱学与光谱分析,2010,30(1):142-145. doi: 10.3964/j.issn.1000-0593(2010)01-0142-04

    LÜ Q B, XIANG L B, YAO T, et al. Modeling and simulation of effect of optical distortion on the large aperture static imaging spectrometer[J]. Spectroscopy and Spectral Analysis, 2010, 30(1): 142-145. (in Chinese) doi: 10.3964/j.issn.1000-0593(2010)01-0142-04
    [11] 郑玉权. 超光谱成像仪的精细光谱定标[J]. 光学 精密工程,2010,18(11):2347-2354.

    ZHENG Y Q. Precise spectral calibration for hyperspectral imager[J]. Optics and Precision Engineering, 2010, 18(11): 2347-2354. (in Chinese)
    [12] 郑子鹏, 邱波, 魏诗雅, 等. 曲线距离法的二维光纤光谱弯曲校正[J]. 光谱学与光谱分析,2019,39(10):3051-3055.

    ZHENG Z P, QIU B, WEI SH Y, et al. Two-dimensional fiber spectral bending correction based on curve distance method[J]. Spectroscopy and Spectral Analysis, 2019, 39(10): 3051-3055. (in Chinese)
    [13] 于丙文, 金伟, 金钦汉, 等. 基于能量重分配的波长偏移校正方法[J]. 高等学校化学学报,2019,40(8):1600-1605. doi: 10.7503/cjcu20190144

    YU B W, JIN W, JIN Q H, et al. Wavelength drift correction method based on energy redistribution[J]. Chemical Journal of Chinese Universities, 2019, 40(8): 1600-1605. (in Chinese) doi: 10.7503/cjcu20190144
    [14] 朱丹彤, 沈宏海, 杨名宇, 等. 编码孔径成像光谱仪中编码元形变的分析校正[J]. 激光与光电子学进展,2018,55(6):061201.

    ZHU D T, SHEN H H, YANG M Y, et al. Analysis and correction of coded pixel distortion in coded aperture imaging spectrometer[J]. Laser &Optoelectronics Progress, 2018, 55(6): 061201. (in Chinese)
    [15] 董瑛, 相里斌, 赵葆常. 大孔径静态干涉成像光谱仪的干涉系统分析[J]. 光学学报,2001,21(3):330-334. doi: 10.3321/j.issn:0253-2239.2001.03.017

    DONG Y, XIANG L B, ZHAO B CH. Analysis of interferometer systerm in a large aperture static imaging spectrometer[J]. Acta Optica Sinica, 2001, 21(3): 330-334. (in Chinese) doi: 10.3321/j.issn:0253-2239.2001.03.017
    [16] 董瑛, 相里斌, 赵葆常. 大孔径静态干涉成象光谱仪中的横向剪切干涉仪[J]. 光子学报,1999,28(11):991-995.

    DONG Y, XIANG L B, ZHAO B CH. Lateral shearing interferometer in large aperture static imaging spectrometer[J]. Acta Photonica Sinica, 1999, 28(11): 991-995. (in Chinese)
    [17] 王爽. 大孔径静态干涉光谱成像仪信噪比研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2013.

    WANG SH. Research on the signal-to-noise ratio of large aperture static imaging spectrometer[D]. Xi’an: Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2013. (in Chinese).
    [18] SUN Q CH, HOU Y Q, CHEN J. Lens distortion correction for improving measurement accuracy of digital image correlation[J]. Optik, 2015, 126(21): 3153-3157. doi: 10.1016/j.ijleo.2015.07.068
    [19] 邹曜璞. 星载傅里叶光谱仪星上数据处理研究[D]. 上海: 中国科学院研究生院(上海技术物理研究所), 2016.

    ZOU Y P. Research of on-board data processing techniques for Fourier transform spectrometer[D]. Shanghai: Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, 2016. (in Chinese).
    [20] 蔡萍, 李潇雁, 唐玉俊, 等. 改进的空间大口径追踪相机畸变校正[J]. 光学精密工程,2019,27(10):2272-2279. doi: 10.3788/OPE.20192710.2272

    CAI P, LI X Y, TANG Y J, et al. Improved distortion correction method for spacial large aperture tracking cameras[J]. Optics and Precision Engineering, 2019, 27(10): 2272-2279. (in Chinese) doi: 10.3788/OPE.20192710.2272
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1621
  • HTML全文浏览量:  398
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-08
  • 修回日期:  2020-06-15
  • 网络出版日期:  2021-02-08
  • 刊出日期:  2021-03-23

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!